Potential Usage of Artificial Intelligence and Machine Learning for the enhancement of weather and climate related services

> Addis Ababa University አዲስ፡አበባ፡ዩኒቨርሲቲ

Addisu G. Semie COMPUTATIONAL DATA SCIENCE PROGRAM Addis Ababa University

WISDOM, ELEVATE YOUR INTELLECT AND SERVE HUMANITY !

Little about me

- Computational Data Science Faculty AAU
- Regular Associate at ICTP
- Post-doc research fellowship CNRS, Paris
- PhD in Environmental and Industrial Fluid Mechanics from University of Trieste, Italy
- ICTP TRIL fellowship Trieste, Italy
- MSc degree in Computational Science with specialization of Computational Mechanics and Dynamics from AAU
- Participate in the installation and configuration of HPC cluster (AAU, ICTP and University of Douala)
- Research interest Weather, Climate Science and Energy

Spontaneous organization of convection

SS004E12656

- Understanding the organization of tropical convection is important for understanding both tropical and global climate variability
 - The process of organization has also been recently suggested as a potential regulator of climate

- Idealized modeling of organized convection in RCE using a cloud resolution model (CRM) -WRF
- Organization metrics I_{org} (*Tompkins* and Semie, 2017)

RESEARCH ARTICLE

10.1029/2020MS002186

Special Section:

Using radiative-convective equilibrium to understand convective organization, clouds, and tropical climate

Impact of a Mixed Ocean Layer and the Diurnal Cycle on Convective Aggregation

Adrian M. Tompkins¹ 💿 and Addisu G. Semie^{2,3} 💿

¹Earth System Physics, Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, ²Laboratoire de Meteorologie Dynamique (LMD/IPSL), Sorbonne University, CNRS, Paris, France, ³Computational Data Science Program, Addis Ababa University, Addis Ababa, Ethiopia

@AGU PUBLICATIONS

Journal of Advances in Modeling Earth Systems

RESEARCH ARTICLE

10.1002/2016MS000802

Key Points:

- Updraft entrainment a critical process for spontaneous organization of deep convection
- With O(km) horizontal grid sizes, undraft entrainment represented by

Organization of tropical convection in low vertical wind shears: Role of updraft entrainment

Adrian M. Tompkins¹ (D) and Addisu G. Semie^{1,2} (D)

¹Earth System Physics, Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, ²Now at: Laboratoire de Météorologie Dynamique, Paris, France

Influence of the organization of deep convection

- Observations suggest a strong link between the intensity of extreme rainfall at the local scale and the organization of deep convection, especially over land. *Semie and Bony, 2020*
- Organization of convection and atmospheric stability complement each other to modulate significant fraction of monthly interannual variance of the net tropical radiation budget. *Bony et. al 2020*

Geophysical Research Letters

RESEARCH LETTER

10.1029/2019GL086927

Key Points:

- The link between tropical precipitation extremes and the mesoscale organization of deep convection is investigated using satellite data
- The strength of local precipitation

AGU Advances

RESEARCH ARTICLE 10.1029/2019AV000155

Key Points:

- The monthly variability of deep convective organization in the tropics is investigated using satellite observations
- An enhanced organization of deep convection is associated with a drier troposphere, fewer high clouds, and a radiative cooling of the tropics
- Observations suggest equal and complementary modulations of the

Relationship Between Precipitation Extremes and Convective Organization Inferred From Satellite Observations

Addisu Gezahegn Semie^{1,2} and Sandrine Bony¹

¹Laboratoire de Meteorologie Dynamique (LMD/IPSL), Sorbonne University, CNRS, Paris, France, ²Computational Data Science Program, Addis Ababa University, Addis Ababa, Ethiopia

Observed Modulation of the Tropical Radiation Budget by Deep Convective Organization and Lower-Tropospheric Stability

S. Bony¹ (D), A. Semie^{1,2}, R. J. Kramer^{3,4}, B. Soden⁵ (D), A. M. Tompkins⁶ (D), and K. A. Emanuel⁷

¹LMD/IPSL, Sorbonne University, CNRS, Paris, France, ²Computational Data Science Program, Addis Ababa University, Addis Ababa, Ethiopia, ³Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA, ⁴Universities Space Research Association, Columbia, MD, USA, ⁵RSMAS, University of Miami, Miami, FL, USA, ⁶ICTP, Trieste, Italy, ⁷Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA

AAU, Computational Data Science Program

- The curriculum is revised in 2019 and it now called Computational Data Science Program
- We used Computational Data Science tools to solve real-world problems.

Weather Forecasting

 Accurate weather and climate forecasts are essential for informing decision-making across sectors like agriculture, water management and energy.

Weather forecasting

Currently, numerical weather prediction (NWP) models are the most accurate forecasting systems, employing discretized grids and solving complex partial differential equations to describe atmospheric states.

Difficulties in predicting weather and climate

- The Earth's immense size poses limitations on resolution, making it challenging to accurately represent all crucial processes in model simulations.
- The Earth System shows "chaotic" dynamics which makes it difficult to predict the future based on equations
- Some of the processes involved are not well understood
- The simulations are computationally expensive
- How to solve these difficulties?

Artificial intelligence and machine learning (AI/ML)

- Huge number of observations and Earth system data creates conducive environment for the application of AI/ML for weather forecasting
- AI/ML present new opportunities to improve weather and climate services
 by supplementing physical models across various time scales.

Satellites, airplanes, ships, buoys, radars, balloons, dropsonds

Artificial Intelligence and Machine Learning (AI/ML)

• AI/ML can help address issues like computational constraints, model uncertainty, coarse resolutions, and inadequate representation of small-scale phenomena like atmospheric convection.

Tracking tropical cyclones

Pangu-Weather is AI-based weather forecasting system

Products from various AI models

https://charts.ecmwf.int/catalogue/packages/ai_models/?facets=%7B%22Parameters%22%3A%5B%5D%2C %22Model%22%3A%5B%5D%7D

ECMWF Charts

Help → Log in

A Home / Packages / Products from various AI Models

Q Search products...

Model

FourCastNet

GraphCast

Pangu-Weather

Product type

Experimental: Machine learning models

Parameters

Wind

Mean sea level pressure

Temperature

Geopotential

Precipitation

(FourCastNet machine learning model: Experimental): 500 hPa geopotential height and 850 hPa temperature

FourCastNet v2-small:a deep learning-based system developed by NVIDIA in collaboration with researchers at several US universities.It is initialised with ECMWF HRES analysis. FourCastNet operates at 0.25° resolution. Latest forecast

(FourCastNet machine learning model: Experimental): Temperature and geopotential at various pressure levels

FourCastNet v2-small:a deep learning-based system developed by NVIDIA in collaboration with researchers at several US universities. It is initialised with ECMWF HRES analysis. FourCastNet operates at 0.25° resolution.

Latest forecast

E.

(FourCastNet machine learning model: Experimental): 2 m temperature and 10 m wind

FourCastNet v2-small:a deep learning-based system developed by NVIDIA in collaboration with researchers at several US universities. It is initialised with ECMWF HRES analysis. FourCastNet operates at 0.25° resolution.

Usage of AI/ML for the enhancement of weather and climate

related services

The following list indicates some of initiatives that are being taken by our research team:

- Prediction of high-impact events like droughts.
- Improving sub-seasonal to seasonal forecasts.
- Forecasting renewable energy (solar, wind)

Deep Learning (DL)

Ability of a machine to imitate intelligent human behavior

Application of AI that allows a system to automatically learn and improve from experience

Application of Machine Learning that uses complex algorithms and deep neural nets to train a model

Why Deep Learning Model?

- Ability to capture complex relationships.
- Automatic feature extraction.
- Handling large-scale datasets.
- Transfer learning and pre-trained models.
- Adaptability to changing conditions.

DL - Convolutional Neural Networks (CNNs)

CNNs

- Are efficient in processing spatial data, such as images or data with grid-like structures.
- Can extract features from spatial images or grids, helping identify patterns, structures, or anomalies.

DL - Recurrent Neural Network (RNNs)

RNNs

- Are well-suited for processing sequential or time-dependent data.
- Can capture temporal dependencies and long-term relationships within time series data.

Hybrid CNN-RNN Architecture

• Integrating Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) in a hybrid model allows for the simultaneous analysis of spatial and temporal patterns.

Development of Drought Early Warning System Using Deep Learning Models

Introduction

Drought is a significant natural disaster that impacts agriculture, water resources, ecosystems, and socio-economic activities.

Early warning systems play a crucial role in mitigating the impacts of drought by providing timely information to decision-makers.

AI/ML techniques have the potential to revolutionize drought forecasting by improving accuracy and lead time.

What is Drought?

- Drought is a prolonged period of abnormally low precipitation that leads to water scarcity and affects various sectors.
- 2) There are different types of drought, including *meteorological* drought (a deficit in precipitation), *agricultural* drought (insufficient soil moisture for crops), and *hydrological* drought (reduced water availability in rivers, reservoirs, and groundwater).
- Droughts can occur at *local*, *regional*, or even *global* scales, and their impacts can be severe, leading to water shortages, crop failures, and environmental degradation.

Drought Damage

Source: Emergency Events Database (EM-DAT), Centre for Research on the Epidemiology of Disasters (CRED): https://www.emdat.be/

Source: NOAA, Climate, Feb 5 – 11, 2016

Drought Indices

Drought indices are tools used to quantitatively assess and monitor drought conditions.

They provide valuable information about the severity and extent of droughts based on various environmental parameters.

- Standardized Precipitation Index (SPI)
- Palmer Drought Severity Index (PDSI)
- Standardized Soil Moisture Index (SSI)
- Crop Moisture Index (CMI)
- Vegetation Condition Index (VCI)
- Evaporative Stress Index (ESI)

Drought are not preventable, but they are predictable.

Role of Early Warning Systems

Developing early warning systems are essential for proactive drought management.

They provide decision-makers with timely information on drought conditions, allowing for effective planning and response.

Early warnings enable to minimize cost of drought and mitigation measures in agriculture and other socioeconomic sectors.

Long Short-Term Memory Algorithm

- LSTM model is a special kind of RNN, capable of learning long-term dependencies in processing sequential data (Hochreiter & Schmidhuber, 1997).
- LSTM cells consists of three gates and memory cell (cell state).
- The first gate is called *Forget gate*, the second gate is known as the *Input gate*, and the last one is the *Output gate*.

Objective

To design and deploy an AI/ML-based drought early warning application that improves the accuracy of drought prediction, enhances the lead time for decision-making, and enables targeted interventions to mitigate the impacts of drought on agriculture, water

resources, ecosystems, and society.

Specific Objectives

Develop	Improve	Deploy	Establish
Develop a robust AI/ML model for drought prediction.	Improve the lead time and accuracy of drought early warning system.	Deploy the drought forecasting AI model into a usable application.	Establish a collaborative framework for sharing data, knowledge, and best practices among relevant stakeholders in drought management.

Method

Predictor Domains

SST Anomaly

Niño1+2 region Sea Surface Temperature anomaly [0-10S, 90W-80W]

Niño4 region Sea Surface Temperature anomaly [5N-5S,160E-150W]

IOD, NAO, SOI, OLR Anomaly

Indian Ocean Dipole Index (IOD)

Southern Oscillation Index (SOI)

North Atlantic Oscillation (NAO)

Outgoing Long Wave Radiation (OLR) at 160E-160W and 5S-5N

Zonal Wind Anomalies

Zonal Wind anomalies at Equator at 200-mb 5N-5S, 165W-110W

West Pacific zonal wind anomalies at 850-mb 135E-180W, 5N-5S

South Central Pacific zonal wind anomalies at 850-mb, 175W-140W, 5N-5S

Calculated SPI at d/f lag Periods

4	-3	-2	-1	0	1	2	3	4

SPI: 1981-2022 (CHRIPS) SPI 201509 run=12

3

1

-2

-1

-2

Merged Dataset

	Year-Month	ANOM_NINO1+2	ANOM_NINO3	ANOM_NINO4	ANOM_NINO3.4	SOI	 1994	1995	1996	1997	1998	1999
0	1981-01	-1.50	-0.71	-0.13	-0.36	0.6	 0.637 <mark>1</mark> 56	0.712172	1.067593	1.067593	1.309366	1.309366
1	1981-02	-1.17	-0.88	-0.17	-0.64	-0.3	 0.382652	0.876008	0.565574	0.430292	0.496789	0.526824
2	1981-03	-0.55	-0.59	-0.17	-0.64	<mark>-</mark> 2.1	 2.659780	2.824804	2.544740	2.293281	2.232384	2.349052
3	1 981-04	-0.73	-0.52	-0.52	-0.53	-0.2	 0.993349	1.090022	1.149011	1.121511	1 061071	1.103248
4	1981-05	-0.77	-0.54	-0.56	-0.57	1.3	 0.7 <mark>1</mark> 5724	0.594208	0.399251	0.249374	Ask 윉 9	0.006612
			117				 					
499	2022-08	-0.60	-0.67	-1.09	-0.97	1.7	 -0.322593	-0.890070	- <mark>1.11678</mark> 7	<mark>-1.6661</mark> 93	-1.1 <mark>1</mark> 9901	-1.692297
500	2022-09	-1.02	-0.96	-1.17	-1.07	2.7	 -0.824753	-1.326393	-0.813159	-0.055246	-0.218348	-0.581796
501	2022-10	-1.78	-1. <mark>1</mark> 1	<mark>-1.12</mark>	-0.99	2.8	 0.107265	-0.031670	0.098833	0.136501	0.043186	-0.065646
502	2022-11	-1.13	-0.94	-0.99	-0.90	0.5	 -0.675650	-0.399150	-0.066127	-0. <mark>1</mark> 30335	0.031247	0.153081
503	2022-12	-0.46	-0.82	-0.84	-0.85	3.5	 0.430292	0.637156	0.712172	0.967363	0.967363	0.876008

504 rows × 3442 columns

Actual Vs Predicted SPI Values

1-month SPI of August, 2015

Actual

15°N

12°N

9°N

6°N

3°N

15°N

12°N

9°N

6°N

3°N

Expected Outcomes

Improved accuracy: enhanced prediction models and techniques leading to more accurate and reliable drought forecasts.

Timely warnings: early detection and timely communication of drought onset, duration, and severity, enabling proactive measures and preparedness.

Future drought risk: enhanced understanding of future drought risk areas and vulnerability under different emission scenarios, facilitating long-term planning and climate resilience.

Policy support: Informing the development of robust drought management policies and guidelines based on scientific evidence and reliable forecasts.

Capacity building: strengthened technical capacities and expertise in drought forecasting, monitoring, and response at various levels.

Improving sub-seasonal to seasonal forecasts

Motivation of the Research

Importance

• Seasonal forecasting (rainfall) is the most important variable

Existing Potential

• Recent improvements to the LSTM and Transformer architecture provides an objective approach and believed to provide a better prediction

Existing Limitations

• The seasonal forecast in Ethiopia utilizes analog method which makes it subjective and has some limitation in terms of accurate seasonal prediction.

Bridging the Gap

• To adopt and implement the official Temporal Fusion Transformers (TFT) to enhance spatio-temporal awareness for seasonal and sub-seasonal prediction

Objective

To provide a better seasonal and sub-seasonal prediction and interpretation for the region of Ethiopia

Regional/Oceanic Data Collection

Copernicus Climate Change Service (C3S) All weather data 1960 - 2022 ERA5 geo-gridded regional data was downloaded 0.5 Spatial Resolution **Daily Temporal Resolution** from Copernicus Climate Change Service (C3S) - Climate Data Store (CDS) **ERA 5** NOAA В . \[]} The National Oceanic and Atmospheric All SSTs from 1960 - 2023 Administration Specific Spatial Resolution

Monthly Temporal Resolution

Merged Dataset

	year	months	nino34	nina4	nina1	npi	dmi	nao	gmsst
0	1950	1	0.232365	0.167102	0.396702	0.750713	0.487607	0.560166	0.133929
1	1951	1	0.215768	0.237598	0.503395	0.483910	0.603796	0.603043	0.035714
2	1952	1	0.531120	0.516971	0.527643	0.567821	0.477924	0.683264	0.263393
3	1953	1	0.524896	0.436031	0.505335	0.248065	0.622386	0.568465	0.254464
4	1954	1	0.531120	0.537859	0.362755	0.586558	0.373354	0.549101	0.111607
873	2018	12	0.653527	0.822454	0.479146	0.456619	0.624322	0.587828	0.799107
874	2019	12	0.558091	0.812010	0.373424	0.462729	0.598761	0.629322	0.888393
875	2020	12	0.248963	0.323760	0.319108	0.284725	0.516266	0.449516	0.767857
876	2021	12	0.230290	0.391645	0.213385	0.812627	0.458172	0.495159	0.803571
877	2022	12	0.273859	0.365535	0.332687	0.459470	0.469016	0.145228	0.714286

Performance Metric

TFT			Pers.	
92%	R2	83%	R2	67%
5.108	MAE	14.826	MAE	14.826
9.381	RMSE	19.647	RMSE	31.590

JJAS Weekly Average Rainfall on the Spatial Dimension

Forecasting renewable energy (solar, wind)

- This article reviews advances in renewable energy generation forecasting using ML and DL techniques.
- Accurate forecasting is crucial with the growing use of renewable energy sources in the grid.
- ML and DL are preferred due to their ability to handle complex data and provide accurate predictions.
- The review covers various approaches and models for renewable energy forecasting, discussing their strengths and limitations.
- Challenges like handling uncertainty, data availability, and model interpretability are highlighted.
- The paper emphasizes the need for robust forecasting models to support the integration of renewable energy into the grid for a sustainable energy future.

ENVIRONMENTAL ENGINEERING | RESEARCH ARTICLE

Estimating solar radiation using artificial neural networks: a case study of Fiche, Oromia, Ethiopia Tegenu Argaw Woldegiyorgis^{1*}, Natei Ermias Benti^{2*}, Mesfin Diro Chaka² Addisu Gezahegn Semie² and Ashenafi Admasu Jemberie¹

- Accurate assessment of global solar radiation (GSR) is crucial for effective solar energy system design.
- In developing countries like Ethiopia, the cost and maintenance of measuring devices for GSR are insufficient.
- Researchers have investigated alternate techniques, such as empirical models, which have lower accuracy in estimating GSR in such regions.
- In this article we try to use different artificial neural networks (ANN) types (CFBP, FFBP, LR, EBP)) to predict daily and monthly averaged horizontal GSR around Fiche town in Ethiopia.

Map of the study site

Structure of ANN to predict GSR

Prediction of monthly averaged GSR

MSE	RMSE	MAPE
0.0063	0.0795	1.0989
0.0079	0.0893	1.2525
0.0079	0.0889	1.2075
0.0057	0.0757	0.0966

- All ANN network types accurately predicted mean daily and monthly HGSR.
- Predicted daily GSR: 3.28 kWh/m²/day to 6.97 kWh/m² /day.

Unleashing the Power of Artificial Neural Networks: Accurate Estimation of Monthly Averaged Daily Wind Power at Adama Wind Farm I, Ethiopia

Tegenu Argaw ^{*1}, Natei Ermias Benti^{*2}, <u>Mesfin Diro</u> Chaka², <u>Addisu Gezahegn</u> Semie², <u>Birhanu Asmerom</u> Habtemicheal¹, <u>Ashenafi Admasu</u> Jembrie¹

Aim:

• Evaluate the effectiveness of various ANN network types in estimating monthly average daily wind power at Adama Wind Farm I.

Motivation:

- Wind power is vital for Ethiopian electricity generation, complementing hydropower during dry seasons.
- Accurate wind energy prediction is challenging due to randomness and variability.
- ANN models show promise for improved accuracy in wind energy estimation.

Methods:

- Four ANN network types (FFBP, CFBP, EBP, LR) with seven input parameters.
- Evaluation based on MAPE and R2 metrics.
- EBP network type excelled in wind power estimation for all turbines.

Structure of ANN to predict wind power

Conclusions

- Improved forecasts can guide better decision-making and planning in weather-sensitive sectors.
- There is a growing potential for AI/ML to complement physics-based NWP models and enhance weather and climate prediction capabilities across timescales.
- We underscore the need for continued research and collaboration between weather/climate experts and AI/ML technologists to fully realize the benefits.

Way forward & Comments...

Thank you !

LSTM Architecture

Standardized Precipitation Index (SPI)

Workflow

Encode cyclical features for use in DL

- Many features commonly found in climate

Compile & Evaluation of Encoder-Decoder LSTM to model

define model 2 model = Sequential() model.add(LSTM(200, activation='relu', input shape=(n steps in, n features))) model.add(RepeatVector(n steps out)) 5 model.add(LSTM(200, activation='relu', return sequences=True)) model.add(TimeDistributed(Dense(n features))) 6 # Compile model 2 model.compile(loss='mse', optimizer=Adam(learning rate=0.0001), metrics=['mae', 'mse'])

1 # Fit the model

2 history = model4.fit(X train, y train, validation data=(X val, y val), epochs=100, batch size=1, callbacks=[cp4], verbose=1)

Evaluation

Final loss : 0.02841190993785858 Final mae : 0.12637433409690857 Final mse : 0.02841190993785858 Final val loss : 0.05382310599088669 Final val mae : 0.18171735107898712 Final val mse : 0.05382310599088669

