

#### Green Hydrogen for Africa- Potentials, opportunities and challenges

# Dr. Solomon Agbo Forschungszentrum Juelich GmbH Senior Scientist/H2Atlas-Africa Project coordinator







#### **Basic facts about hydrogen**





- Most prevalent element in the whole universe
- Gaseous at room temperature and atmospheric pressure
- Burns with oxygen to produce water
- Produced from a variety of sources (water, fossil fuels, or biomass)
- Highest energy content of any common fuel by weight (about three times more than gasoline)

→ Produces water on combustion, hence no carbon emissions

https://medium.com/@KOR\_Water









### Why hydrogen?



- Can be produced and used green
- Broad applications in the industries, transport sector, residential and for electrification
- Opportunity to store energy
  - Grid stability
  - Deal with intermittent sources
- Can produce synthetic fuels (methanol, methane, ammonia etc) for transport sector

#### → Many possibilities in direct or indirect use









#### How is hydrogen produced?



#### **Green hydrogen**

<u>Technology</u>: Electrolyser <u>Input</u>: RE electricity <u>Process</u>: Splitting water into hydrogen and oxygen

#### Blue hydrogen

<u>Technology</u>: (1) Steam Methane Reforming (SMR) plant with carbon capture and storage (CCS); (2) Coal gasification plant with CCS <u>Input</u>: (1) Natural Gas; (2) Coal <u>Process</u>: Converting (1) natural gas / (2) coal into hydrogen and CO<sub>2</sub>, CO<sub>2</sub> stored and/or reused

#### Grey hydrogen

<u>Technology</u>: (1) Steam Methan Reforming (SMR) plant; (2) Coal gasification plant <u>Input</u>: (1) Natural Gas; (2) Coal <u>Process</u>: Converting (1) natural gas / (2) coal into hydrogen and CO<sub>2</sub>

#### Turquoise hydrogen

<u>Technology</u>: Methane pyrolysis plant wit carbon capture and utilisation (CCU) <u>Input</u>: Mainly natural gas <u>Process</u>: Splitting methane into hydrogen and solid carbon









### How is green hydrogen produced?













Bundesministerium

für Bildung

und Forschung

#### Uses and application of hydrogen





#### **Uses and application of hydrogen**





# Long term use and application of hydrogen H2ATLAS

MtH2 per year





#### **Hydrogen potentials for AFRICA**







#### Resources





Huge renewable enrgy potentials

JÜLICH Forschungszentrum



- EASTERN
  - Vast land area -30.37 million sq km



#### Resources





UNEP 2010

H2ATLAS AFRICA

17 rivers with catchments areas greater than 100 000 kM2 160 lakes larger than 27 kM2 one-third of the world's major international**water**basins (basins >100,000kM2

• Abundance of human (young people) resources







#### **Resources in numbers**

According to the ADB (2017):

- 1000GW potential from Solar
- 110 GW from wind
- 350 GW from hydropower
- 15GW from geothermal

→ Enough to generate 1000 times more electricity than the region would need in 2040











### Benefits of green hydrogen for the region

- Opportunity to tap more of the exisiting renewable energy sources (address energy access, meet green target, combat climate change)
- Resource diversification (opportunity for more countries)
- African can be a key play in the international energy market
- Revenue source (local use, export)









### H<sub>2</sub>ATLAS-AFRICA PROJECT

Atlas of green hydrogen generation potentials in Africa: A technological, environmental and socio-economic feasibility assessment



Funded by Federal Ministry of Education and Research (BMBF)

#### Main partners:

- Forschungszentrum Jülich
- West African Science Service Centre on Climate change and Adapted Land use (WASCAL), Accra, Ghana
- Southern Africa Science Service Centre for Climate change and Adaptive Land Management (SASSCAL), Windhoek, Namibia.

**Main aim**: Create a database to develop a green hydrogen-driven economy to support sustainable development and contribute to fight against climate change in both Africa and Germany.

**Underlying principle**: Climate change and the need for sustainable development are global challenges that must be addressed relying on cross-border partnership based on trust, understanding and fairness.









### H<sub>2</sub>ATLAS guiding criteria





Local interests are considered.









#### Work packages



### H<sub>2</sub>ATLAS guiding criteria- Details

- Geography, environment and resources (e.g. availability of land and water [identification and avoidance of conflicts of use])
- Influence of future climatic developments on the availability of resources
- Generation potential from renewable sources (e.g. sun, wind, hydropower)
- Infrastructures and logistics (e.g. deep-sea ports, gas and electricity networks, transport/traffic routes)
- Investment security
- Local energy situation and future needs; possible export quantities



#### Main deliverables



- > Techno-economic green  $H_2$  production and supply potential
  - What is the **optimal system design** to satisfy local demands and H<sub>2</sub> export?
  - Quantity and cost of H<sub>2</sub>

Interactive user display interface- Atlas

Potential sites and concept for pilot project



• [1] Welder, L., et al., Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany. Energy, 2018









# **H2Atlas project Results**















#### **Result 2: Abundant & Cheap RE Potential**



Average LCOE [€<sub>ct</sub>/kWh]

| 2.10 | 3.07 | 4.03 | 5.00 |
|------|------|------|------|

Preference should be given to expanding open-field photovoltaic in West Africa











• Technical green hydrogen production potential over 160 PWh; without local demand/water constraint











- Local ground water availability constraint the technical green hydrogen potential by roughly 80%
- Cheap desalination of sea water (ca. +0.5-0.7% of LCOH) required to explore the full potential











#### **Result 6: Increased Social impact**



Based on increased energy access, stimulation of economic activities and population distribution











#### For more information on H2Atlas:

#### https://www.h2atlas.de/en/











H2Atas for other sub-regions



## To follow soon!







#### **Main challenges**



- Dealing with the status-quo (e.g. dependence on crude oil)
- Limited supporting infrastructure
- Insecurity and investment climate
- Regional concept for infrastructure and logistics (e.g. deep-sea ports, gas and electricity networks, transport/traffic routes)
- Enabling framework (policies, regulations, legal etc)











# For immediate action







H2ATLAS AFRICA

- All stakeholders involvement
- **Deployment of demonstration/pilot projects** based on state-of-the-art technologies (e.g. electrolyzer, PV and wind turbine)
- Public-private partnerships and ensure mutual benefit







- Capacity building (academic and non-academic)
  - Establish international Master/PhD programmes on energy and green hydrogen
  - Development of international training activities for technicians and technologists
- **Research and innovation** 
  - Establish transnational research and innovation hubs focused on green hydrogen technologies (thematic clusters in participating countries: electrolyzers, membranes, fuel cells, hydrogen production, storage and transport, energy system analysis & modeling)
  - Adapt innovation to specific local conditions to address local needs to create direct local benefit











- Science-based policy for a green hydrogen economy
  - Organize an agenda process with industry, science, policy, stakeholders
  - Development of national hydrogen strategy (to align with regional strategy)
  - Develop a Green Hydrogen Action Plan for the region













- Development of strategic international cooperation/partnership
  - Strengthen long-term relationships for mutual benefit
  - Create and enhance cooperation with partners around the world











- Short- and Long-term investment plan on energy infrastructure
  - Grid network
  - Off-takers
  - Consider regional pool









#### Conclusion



- Let us start now not tomorrow

- Be part of the global green hydrogen movement











# Thank you for your attention!





