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A B S T R A C T   

Increased availability and access to satellite observation and the advanced blending techniques for generating 
reanalysis data have improved accuracy of precipitation products for data poor regions. However, all data 
products should be evaluated for their performance before being used for specific applications in different re-
gions or locations. In this study, we evaluated 20 precipitation products for their drought monitoring perfor-
mance over Ethiopia. These datasets are produced by different state-of-the-art techniques, including: 1) gauge- 
interpolated, 2) satellite-estimate, 3) reanalysis and 4) merged from multi-sources. The Ethiopian gauge- 
satellite gridded precipitation dataset and gauge records from 126 stations were used for ground truthing. 
Drought indices were generated for all data products using the Standardized Precipitation Index (SPI) method at 
3- and 12-month time scales. We evaluated accuracy of the data products in representing occurrence and spatial 
and temporal patterns of the 3- and 12-month droughts using visual and correlation analysis techniques. The data 
were visually compared against reference data in representing four selected major drought episodes in the 
country (1984, 2002, 2009 and 2015). The Spearman’s correlation was used to quantify relationships between 
the 20 precipitation products and two reference datasets using SPI values generated at 3- and 12-month time 
scales. Results showed considerable discrepancies and poor performance for most datasets. The ability to 
represent the spatial pattern and severity of major drought events varied between drought years. Although the 
correlation result for areal average SPI time series of the 3- and 12-month droughts for all data products showed 
statistically significant correlation with the reference data, there is discrepancy between the data products across 
space. Overall, only three out of the 20 products (CHIRPS, FLDAS and GPCC) performed relatively better. Our 
results provide important information to guide the choice of precipitation products for drought research, and 
operational drought risk management as well as useful feedback to data developers to further improve their 
products.   

1. Introduction 

Precipitation is a key component of the hydrological cycle that is 
widely used for drought monitoring and forecasting across the world 
(WMO , 2012). However, ground observations that provide accurate 
precipitation data are very scarce in many drought-prone parts of the 
world, and even declining in most parts of Africa (Dinku et al., 2014; 
Vogel et al., 2019). In addition, available station records are often low 
quality, and difficult to access due to legal restrictions, lack of 

dissemination capacity, or high cost of data in many parts of Africa 
(Dinku et al., 2014). Innovation in satellite observation and the 
state-of-the-art techniques in precipitation data production such as 
interpolation from in-situ observations, modeling and reanalysis have 
created a new avenue to fill data voids in data-poor regions (Le Coz and 
van de Giesen, 2020). This is because these precipitation products pro-
vide geographically and temporally continuous information for unga-
uged or data-poor regions, and are freely available for end users 
(AghaKouchak et al., 2015). 
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Currently, there are many precipitation products which can be 
grouped into four classes. (1) Gauge interpolated: these are precipitation 
products created by interpolating/regridding gauge observations. Some 
of the high resolution gauge interpolated precipitation products are the 
Climate Prediction Center (CPC; Xie et al., 2007), Climate Research Unit 
(CRU; Harris et al., 2014), Global Precipitation Climatology Centre 
(GPCC; Schneider et al., 2014), and PRECipitation REConstruction over 
Land (PREC/L; Chen et al., 2002). Each of these products are different in 
terms of spatial resolution, number of gauges used and interpolation 
methods. (2) Satellite-only: these are precipitation products either 
derived from polar orbiting passive microwave (PMW) or geostationary 
thermal infrared (TIR) or a combination of the two. Some of the high 
resolution (<0.5◦) satellite-based precipitation products are Precipita-
tion Estimation from Remotely Sensed Information using Artificial 
Neural Networks (PERSIANN; Sorooshian et al., 2000), 
PERSIANN-Cloud Classification System (PERSIANN-CCS; Hong et al., 
2004), Climate Prediction Center MORPHing (CMORPH; Joyce et al., 
2004), Tropical Rainfall Measuring Mission (TRMM; Huffman et al., 
2007), and Climate Hazard Group InfraRed Precipitation (CHIRP; Funk 
et al., 2015). 3) Satellite-gauge merged: these precipitation products have 
been produced by merging TIR or PMW or both with gauge observation 
and sometimes with radar and reanalysis data using different data 
merging algorisms (Le Coz and van de Giesen, 2020). Some of the widely 
used merged products include Africa Rainfall Climatology version 2 
(ARC2; Novella and Thiaw, 2013), Climate Hazard Group InfraRed 
Precipitation with Stations (CHIRPS; Funk et al., 2015), 
PERSIANN-Climate Data Record (PERSIANN-CDR; Ashouri et al., 2014), 
TRMM Multi-Satellite Precipitation Analysis V-3B43 (TMPA-3B43; 
Huffman et al., 2007), Tropical Applications of Meteorology using 
SATellite and ground-based observations (TAMSAT; Tarnavsky et al., 
2014), Rainfall Estimate version 2 (RFE2), and the Tropical Applications 
of Meteorology Using Satellite Data and Ground-Based Observations 
(TAMSAT; Tarnavsky et al., 2014). Of these ARC2, RFE2 and TAMSAT 
are developed specifically for Africa. Each precipitation product in 
satellite-only and satellite-gauge merged groups differ each other in 
terms of spatial resolution, type and number of data inputs, record 
length, algorism used to estimate data, etc. 4) Reanalysis products: these 
precipitation products are generated by assimilating information 
derived from weather generator numerical models with ground or sat-
ellite observation (Balsamo et al., 2015). Some of these are Global Land 
Data Assimilation System (GLDAS: Rodell et al., 2004), Modern-Era 
Retrospective analysis for Research and Application version 2 
(MERRA2: Gelaro et al., 2017) and European Centre for Medium-Range 
Weather Forecasts ReAnalysis version 5 (ERA5; Albergel et al., 2018) 
and the Famine Early Warning Systems Network (FEWS NET) Land Data 
Assimilation System (FLDAS; McNally et al., 2017). These precipitation 
data products also differ in many ways (e.g., spatial resolution, param-
eterization, model algorism and bias correction). 

Although these data products largely increased availability and ac-
cess to many precipitation products, they cannot be directly used for 
specific purposes before testing for suitability. This is because each 
precipitation product has its own advantages and weaknesses and its 
appropriateness for specific applications (such as for drought or flood 
monitoring or agrometeorological applications) vary from place to place 
and over time due to many factors (e.g. variations in type and number of 
data inputs, spatial resolution, and types of data production algorisms) 
(Duan et al., 2016; Beck et al., 2017; Le Coz and van de Giesen, 2020). In 
other words, different precipitation products have different quality in 
representing the various aspects of precipitation occurrences (e.g. 
amount, frequency, intensity, seasonality, geographical distribution, 
etc). Hence, different precipitation products serve different specific 
functions (e.g., climatological studies, hydrological application, agro-
meteorological monitoring, and drought and flood monitoring and 
forecasting). For example, the precipitation product commonly recom-
mended for drought monitoring is the one that can accurately represent 
low precipitation amounts (Tarnavsky et al., 2014). It is therefore 

imperative to evaluate spatiotemporal representativeness and applica-
bility of available precipitation products for specific purposes before any 
actual use (Le Coz and van de Giesen, 2020). 

During the last two decades, many country scale (e.g., Dinku et al., 
2007, 2008, 2011; Diro et al., 2009; Romilly and Gebremichael, 2011; 
Young et al., 2014; Lemma et al., 2019) and basin scale (e.g., Hirpa et al., 
2010; Worqlul et al., 2014; Bayissa et al., 2017; Gebremichael et al., 
2017; Sahlu et al., 2017; Ayehu et al., 2018; Belay et al., 2019) studies 
have evaluated performance of various global and quasi-global precip-
itation products in capturing various aspects of precipitation occur-
rences over Ethiopia. The results show large differences between data 
products in representing rainfall events and amount across space and 
seasons. For example, Dinku et al. (2008) reported strong agreement 
between the monthly precipitation for three global gauge-interpolated 
precipitation products (CPC, CRU, GPCC) and reference stations. On 
the other hand, different results were reported on the representativeness 
of different satellite-based precipitation products. For example, Dinku 
et al. (2007, 2011) and Romilly and Gebremichael (2011) concluded 
that no single satellite product performs best for Ethiopia, as it varied by 
location and the specific application considered. Hirpa et al. (2010) 
found comparable performance for the real time TRMM (3B42RT) and 
CMORPH products in representing the spatial pattern, bias and 
elevation-dependent trends. Bayissa et al. (2017); Gebremicael et al. 
(2017); Lemma et al. (2019) and Belay et al. (2019) identified CHIRPS as 
the best satellite based precipitation product for Ethiopia. Others such as 
Young et al. (2014) identified TRMM as the best data in capturing the 
mean rainfall, rainy events and seasonal variability across different 
basins, while Sahlu et al. (2017) identified CMORPH to be the best data 
that accurately represents the wet season rainfall over the Blue Nile 
Basin. Dinku et al. (2018) compared CHIRP and CHIRPS precipitation 
products with ARC2 and TAMSAT products at daily, decadal and 
monthly time scales over the east African region. The results show that 
the first two precipitation products to be significantly superior to ARC2 
and relatively better than TAMSAT products. However, TAMSAT 
showed better skill in representing precipitation at the daily time scale. 
On the other hand, almost all available studies concurred that the 
gridded data products have better skill in representing precipitation 
amount during the wet season than the dry season, and most 
satellite-based products underestimated precipitation amount in the 
highland and overestimated in the lowland parts of the country (Dinku 
et al., 2007, 2011; Young et al., 2014). To the best of our knowledge, 
only one study evaluated performance of some of the precipitation 
products for their drought monitoring suitability (Bayissa et al., 2017). 
This study found CHIRPS to be more suitable for meteorological drought 
monitoring over the Upper Blue Nile Basin compared to other four 
gridded products (ARC2, TMPA-3B42, PERSIANN/CDR and African 
Rainfall Climatology and Time-series (TARCAT). 

The aim of this study was to evaluate multiple precipitation products 
for drought monitoring performance over Ethiopia. Evaluation of pre-
cipitation data products can provide valuable information both for data 
users and developers. For local data users (e.g., researchers and practi-
tioners), evaluation results are useful to guide selection of suitable data 
for research on various aspects of drought episodes. For data developers, 
results provide valuable feedback to identify problems on their respec-
tive data products for areas like Ethiopia which is dominated by complex 
topography and climate system. The feedback is thus useful for data 
developers to find ways to improve their products. 

2. Methodology 

2.1. The physiographic context of Ethiopia 

This study is conducted in one of the most drought stricken country 
(Ethiopia) located in the Greater Horn of Africa. Ethiopia is located 
between 3◦ and 15◦ N and 33◦ and 48◦ E, and covers 1.12 million km2 

area (Fig. 1). Ethiopia is characterized by very complex topography with 
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elevation ranging from below sea level in the northeastern part to more 
than 4 600 m above sea level at Mount Ras Dejen in the northern part of 
the country. About 40% of the country is covered by mountains and 
plateaus with elevation greater than 1 500 m asl, and this is classified as 
highland. The remaining has elevation of less than 1 500 m asl and it is 
classified as lowland. The highland part is highly dissected by major 
river systems that include the Blue Nile, Awash, Baro-Akobo, Genale- 
Dawa, Omo-Ghibe, Tekezie and Wabeshebele flowing from the central 
highlands into different directions. The Great East African Rift Valley 
System that runs from northeast to southwest divides Ethiopia into 
eastern and western parts. These complex topographic features have 
created many local climatic conditions that range from hot deserts in the 
northeast and southeastern lowlands to very cold mountain ranges in the 
Simien and Arsi-Bale mountain systems (Degefu et al., 2017). The mean 
annual temperature varies between less than 10 ◦C in the highlands to 
more than 40 ◦C in the hot lowlands, while the mean annual rainfall 
varies between less than 300 mm in the southeastern and northeastern 
lowlands to more than 2000 mm in the southwestern highlands. The 
north-south migration of the Inter-tropical Convergence Zone (ITCZ) 
and the complex topographic features of the country have large control 
over the seasonal and spatial distribution of precipitation and other 
climate elements (Dinku et al., 2011). 

In addition to the spatial variation, rainfall also shows very high 
inter-annual variability, with frequent drought and flood occurrences. 
The development of drought and flood in Ethiopia is associated with 
large-scale atmospheric circulation anomalies that take place over the 
equatorial east Pacific (the El Niño–Southern Oscillation; ENSO) and the 
Indian Ocean, where warming/cooling events are associated with 
drought and flood events during the main (kiremt) rainfall season 
(Degefu et al., 2017). Evidences from local chronicles, archival data, 

historical texts and literature, travelers’ dairies and European explorers’ 
notes indicate that drought incidence in Ethiopia dates back to 253 BC 
(Environmental Protection Authority, 1998). Recent evidences show 
frequency and impacts of drought have increased since the second half 
of the 20th century and drought has become the number one environ-
mental problem affecting the subsistence based rain-fed agricultural 
economy and human livelihood in Ethiopia (Vicente-Serrano et al., 
2012). 

2.1.1. Data description 
Twenty global and quasi-global precipitation products were evalu-

ated in this study for their performance in capturing the spatiotemporal 
conditions of drought episode over Ethiopia (Table 1). These precipi-
tation products varied in terms of spatial resolution (0.04◦–1◦), number 
and type of data inputs used to construct the data (TIR, PMW, radar, 
gauge based and reanalysis or a combination of these in many ways), 
and the type of methods or algorisms used to construct the data. These 
data were selected due to their wider applications for research and 
operational activities, accessibility and high spatial resolution (=<1◦). 
Two precipitation data products that include: 1) quality-controlled 
gauge records from 126 stations (Fig. 1), and 2) Ethiopian satellite- 
gauge merged precipitation data at 0.04◦ (Dinku et al., 2013, 2014) 
were used as reference datasets. The global and regional precipitation 
datasets used in this study are from the four types mentioned above, the 
reference data being the fifth. These are: 1) Reference data, 2) 
Gauge-interpolated, 3) Satellite data, 4) Reanalysis, and 5) Blended 
multi-source data. All the 20 precipitation data products were regridded 
into a common 0.04◦ spatial resolution to enable comparisons. Brief 
description of each of these data classes is given below, and detailed 
information about each individual precipitation data product is 

Fig. 1. Map of Ethiopia and the reference stations used in the study.  
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available at the sources (see Table 1 for sources). 

2.1.2. Reference datasets 
We used two reference data products as benchmark to compare the 

drought monitoring performance of the other studied data products: (i) 
monthly precipitation data from 126 stations, and (ii) satellite-gauge 
merged gridded precipitation product; both covered the period from 
1983 to 2018. We selected 126 representative stations after checking 
250 stations for their data quality (e.g., missing data and length of re-
cord). We used these station-based dataset to evaluate the performance 
of global datasets in capturing locally developed drought indices. The 
satellite-gauge merged precipitation data is produced by the National 
Meteorological Agency (NMA) of Ethiopia in collaboration with the 
International Research Institute (IRI), Columbia University (Dinku et al., 
2013). It is produced by merging precipitation observations for more 
than 600 stations with precipitation estimated from the Meteosat TIR 
which has a time step of 30 min for the first and 15 min frequency for 
second generation obtained from European Organization for the 
Exploitation of Meteorological Satellites (EUMETSAT). It was produced 
by using locally calibrated TAMSAT algorithm on 0.04◦ (4 km) spatial 
resolution and it is available at different time scales (daily, dekdal and 
monthly) starting from 1983 (Dinku et al., 2013). Both reference data-
sets were obtained from NMA. 

2.1.3. Gauge-interpolated 
In this study, we considered the most widely used four gauge- 

interpolated precipitation products. These are the Climate Prediction 
Center (CPC; Xie et al., 2007), Climate Research Unit (CRU; Harris et al., 

2014), Global Precipitation Climatology Centre (GPCC; Schneider et al., 
2014), and the National Oceanographic and Atmospheric Administra-
tion (NOAA) PRECipitation REConstruction over Land (PREC/L; Chen 
et al., 2002). The spatial resolution for CPC and CRU datasets is 0.5◦ and 
for GPCC and PREC/L is 1◦. 

2.1.4. Satellite data 
Currently, there are many precipitation datasets retrieved from 

passive microwave (PMW) information obtained from polar orbiting 
satellites and Thermal InfraRed (IR) information that is frequently 
measured from geostationary satellites, and a hybrid from PMW and TIR 
using different data retrieval algorisms (Duan et al., 2016). In this study, 
we evaluated the performance of four satellite observation only pre-
cipitation datasets that include the Atmospheric Infrared Sounder-only 
version 6 (AIRS v6 AO; Aumann et al., 2004), the Climate Hazard 
Group InfraRed Precipitation (CHIRP; Funk et al., 2015), Precipitation 
Estimation from Remotely Sensed Information using Artificial Neural 
Networks (PERSIANN; Sorooshian et al., 2000) and PERSIANN-Cloud 
Classification System (PERSIANN-CCS: Nguyen et al., 2019). The 
spatial resolution is 1⁰ for ARIS, 0.25⁰ for PERSIANN, 0.05⁰ for CHIRP 
and 0.04⁰ for PERSIANN-CCS data products. 

2.1.5. Reanalysis products 
Reanalysis precipitation data are produced by assimilating infor-

mation from weather generation numerical models with ground or sat-
ellite based observation. In this study, we evaluated the performance of 
four reanalysis precipitation products that are widely used for climate 
system study and drought monitoring across the world. These reanalysis 

Table 1 
Description of reference and global precipitation datasets used in this study.  

No. Dataset Record 
length 

Temporal 
resolution 

Spatial 
resolution 

Data category Source of data 

Gauge-interpolated 
1 CPC 1979-present Daily 0.5◦ Gauge https://www.esrl.noaa.gov/psd/ 
2 CRU 1901-present Monthly 0.5◦ Gauge http://www.cru.uea.ac.uk/data/ 
3 GPCC 1901-present Monthly 1◦ Gauge https://psl.noaa.gov/data/gridded/data.gpcc.html 
4 PREC/L 1948-present Monthly 1◦ Gauge https://psl.noaa.gov/thredds/dodsC/Datasets/precl/ 
Satellite-based 
5 AIRS 2003-present Monthly 1◦ TIR http://disc.sci.gsfc.nasa.gov/AIRS/data/ 
6 CHIRP 1981-present Monthly 0.05◦ TIR ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/ 

CHIRP/monthly 
7 PERSIANN 2001-present Monthly 0.25◦ TIR, PMW ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN-CDR/ 

mthly 
8 PERSIANN-CCS 2003-present Monthly 0.04◦ TIR, PMW ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN-CDR/ 

mthly 
Reanalysis 
9 ERA5 1979-present Monthly 0.28◦ Reanalysis https://cds.climate.copernicus.eu/cdsapp#!/dataset/rea 

nalysis-era5 
10 FLDAS 1982-present Monthly 0.1◦ Reanalysis https://disc.gsfc.nasa.gov/datasets/FLDAS_NOAH01_C_GL_ 

M_001/ 
11 GLADS 1979-present Monthly 1◦ Reanalysis https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS 
12 MERRA2 1980-present Monthly 0.66◦х0.50◦ Reanalysis https://disc.gsfc.nasa.gov/datasets?keywords=MERRA-2/ 
Merged from multi-sources 
13 ARC2 1996_present Daily 0.1◦ TIR, gauge ftp://ftp.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2 
14 CHIRPS 1981-present Daily 0.05◦ TIR, Model, gauge ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/ 

CHIRPS-2.0/global_monthly/tifs 
15 GPM-IMERG 2001-present Monthly 0.1◦ TIR, PMW, sat-radar, 

gauge 
https://pmm.nasa.gov/data-access/downloads/gpm 

16 PERSIANN_CDR 1983-present Monthly 0.25◦ TIR, PMW, gauge ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN-CDR/ 
mthly 

17 TAMSAT 1983-present Monthly 0.05◦ TIR, gauge https://www.tamsat.org.uk/data/rfe/index.cgi 
18 RFE2 2001-present Monthly 0.1◦ TIR, PMW, gauge https://earlywarning.usgs.gov/fews/datadownloads/Conti 

nental%20Africa/Dekadal%20RFE 
19 TerraClimate 1958-present Monthly 0.04◦ TIR, gauge, model https://climate.northwestknowledge.net/TERRACLIMATE/ 
20 TRMM-3B43 1998-present Monthly 0.25◦ TIR, VIS, PMW, Sat- 

radar, gauge 
https://pmm.nasa.gov/dataaccess/downloads/trmm 

Reference data 
1 Ethiopian satellite-gauge 

merged 
1983-present Monthly 0.04◦ TIR, gauge NMA 

2 In-situ stations 1983-present monthly point Station (126) NMA  
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products include European Centre for Medium-Range Weather Forecasts 
(ECMWF) ReAnalysis (ERA5; Albergel et al., 2018), Famine Early 
Warning Systems Network (FEWS NET) Land Data Assimilation System 
(FLDAS; Rui and McNally, 2019), Global Land Data Assimilation System 
(GLDAS; Rodell et al., 2004), and Modern-Era Retrospective analysis for 
Research and Applications version 2 (MERRA-2; Gelaro et al., 2017). 
These datasets are different in many ways such as variable inputs, spatial 
and temporal resolutions, and model simulations used to estimate pre-
cipitation amount. The spatial resolutions of these datasets are 0.28⁰, 
0.1⁰, 1⁰ and 0.58⁰, respectively. 

2.1.6. Merged precipitation from multi-sources 
There has been an increasing effort to produce high quality precip-

itation data by merging precipitation products obtained from two or 
more sources (satellite, gauge, radar and mode reanalysis) using the 
state-of-the-art data merging methods (AghaKouchak et al., 2015). This 
method enables to produce high quality precipitation product as it helps 
to reduce inherent weaknesses and adds advantages from each data 
input (Dinku et al., 2014). For example, gauge-based measurements 
provide the most accurate precipitation estimate over relatively long 
period of time, but precipitation data from gauge observations cannot 
provide spatially continuous information as gauge based observations 
are too sparse or absent over large areas and temporally inconsistent due 
to missing data. On the other hand, satellite based rainfall observation 
provides spatially and temporally consistent and continuous precipita-
tion estimates, however, the available satellite based rainfall products 
are less accurate and have coarse spatial resolution (AghaKouchak et al., 
2015). In this study, we evaluated seven precipitation products pro-
duced from multi-sources. These are the Africa Rainfall Climatology 
version 2 (ARC2; Novella and Thiaw, 2013), Climate Hazard Group 
InfraRed Precipitation with Stations version 2, (CHIRPS v2; Funk et al., 
2015), Global Precipitation Measurement (GPM) Integrated 
Multi-satellitE Retrievals (GPM-IMERG; Huffman et al., 2019), Precipi-
tation Estimation from Remotely Sensed Information using Artificial 
Neural Networks-Climate Data Record (PERSIANN-CDR; Ashouri et al., 
2014), Rainfall Estimate version 2 (RFE2: Xie et al., 2007), Tropical 
Applications of Meteorology using SATellite and ground-based obser-
vations (TAMSAT; Tarnavsky et al., 2014), the Tropical Rainfall 
Measuring Mission (TRMM-3B43; Huffman et al., 2007), and TerraCli-
mate (Abatzoglou et al., 2018). Spatial resolutions for these datasets 
vary between 0.04 (TerraClimate) and 0.25 (PERSIANN-CDR and 
TRMM-3B43). 

2.2. Standardized Precipitation Index (SPI) 

We used the Standardized Precipitation Index (SPI; McKee et al., 
1993) to detect drought development over Ethiopia. SPI is acknowl-
edged for its multiple advantages (e.g., temporal flexibility, spatial 
consistency and low data requirement) and it is widely used for opera-
tional actions (e.g., drought monitoring and forecasting) in many Na-
tional Meteorological and Hydrological Agencies (NMHA) across the 
world (WMO , 2012; AghaKouchak et al., 2015). This method is also 
widely used to evaluate the performance of precipitation products in 
representing drought episodes in different parts of the world (e.g., 
Katiraie-Boroujerdy et al., 2016; Golian et al., 2019). The World Mete-
orological Organization (WMO , 2012) recommended the SPI as the best 
drought monitoring tool to be used for operational activities. SPI pro-
vides information on the probability of precipitation at different time 
scales (3-, 6-, 12-, and 24-month) (McKee et al., 1993). It compares the 
precipitation amount for a specific period (e.g., 3-month) with the 
precipitation totals from the same period for all the years considered in 
the historic records. For example, a 3-month SPI at the end of March 
accounts for the sum of precipitation for the months of January, 
February and March for a particular year and compares with the January 
to March precipitation total of all the years. Similarly, a 12-month SPI at 
the end of December compares the January to December (annual) 

precipitation total in that particular year with the January to December 
precipitation totals of all the years for a given geographical location 
(Shahid, 2008; WMO , 2012). 

Monthly precipitation data for 20–30 years or longer is the input data 
needed to compute the SPI. Different distribution functions such as 
parametric (e.g., gamma; McKee et al., 1993) and non-parametric (e.g., 
Gringorten plotting position formula; Hao and AghaKouchak, 2013) can 
be used to calculate SPI values. In this study we used the gamma dis-
tribution to determine the probability density function that describes the 
long-term time series of precipitation at 3- and 12-month time scales and 
for each grid. Hence, the monthly precipitation amount for each grid and 
month was transformed into running time series of total precipitation for 
3- and 12-month time series to determine the cumulative probability 
density function. Then the inverse normal function was applied to the 
cumulative probability distribution, with mean zero and standard de-
viation of one to generate SPI values. The SPI calculation produces 
positive and negative values; positive SPI values indicate wet condition, 
while negative values represent dry or drought condition. Both the wet 
and dry conditions can then be classified into different intensity classes 
as presented in Table 2. In this study, we considered three drought 
severity classes: Moderate, Severe and Extreme that accounted for 9.2%, 
4.4% and 2.3% of the analysis time, respectively (McKee et al., 1993). 
These percentages are expected to occur from a normal distribution of 
the SPI time series as the SPI is standardized. A threshold is needed to 
define drought event/month in the SPI time series, hence a drought 
month is defined as when the SPI value becomes equal or less than − 1.0. 

2.3. Data evaluation methods 

We used mapping and visual, and correlation analysis approaches to 
evaluate the performance of precipitation products in representing 
geographical coverage and severity of major drought episodes, and 
occurrence of drought events calculated at 3- and 12-month time scales 
over Ethiopia. The visual analysis is a quasi-subjective method that 
enables comparison of the ability of data products in capturing the 
magnitude and spatial patterns of four major historical drought events 
(1984, 2002, 2009 and 2015) against the reference data. We also 
calculated and mapped the spatial variability of annual rainfall depar-
ture from long-term mean (in percent) for the two major drought years 
(2009 and 2015). The spatial distribution of SPI values and percent 
departures of rainfall of the studied data products were compared 
against the Ethiopian gridded precipitation reference data. In addition to 
these, Pearson correlation coefficient was used to see the agreement 
between the evaluated and reference datasets for 3- and 12-month SPI 
time series. The SPI time series of the 3- and 12-month droughts at 126 
stations and the Ethiopian gridded precipitation data products were 
used to verify occurrence or absence of drought events during the study 
period. Furthermore, the studied data products were compared against 
the Ethiopian gridded data for their skill in capturing the spatial dis-
tribution of long-term mean and standard deviation of precipitation 
amounts over Ethiopia. 

Table 2 
Classification of SPI values into different wet and dry magnitude conditions.  

SPI value Classification SPI value Classification 

0 to 0.99 Near normal 0 to − 0.99 Near normal 
1 to 1.49 Moderately wet − 1 to − 1.49 Moderate drought 
1.5 to 1.99 Severely wet − 1.5 to − 1.99 Severe drought 
>2 Extremely wet < − 2 Extreme drought  
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3. Results 

3.1. Performance of different datasets in detecting major drought episodes 
over Ethiopia 

Four major drought events that occurred in Ethiopia in 1984, 2002, 
2009 and 2015 were used to evaluate skills of the studied data products 
in capturing drought spatial patterns and severity. The 12-month SPI 
values for December were used to produce maps for each dataset and 

drought year to support visual comparisons (Fig. 2a-u). As shown by the 
reference maps (Fig. 2a), drought occurred over large parts of the 
country during those years, although the spatial distribution and 
severity varied between those drought years. For example, it was 
observed that the 1984 drought was the worst in terms of its large 
geographical coverage and severity, where large parts of the north-
eastern, southern and central parts of the country were affected by se-
vere and extreme intensity droughts. In contrast, the SPI values for some 
pocket areas in the western and central parts of the country were greater 

Fig. 2. a-u. Spatial pattern of 12-month SPI values for December of 4 four major drought episodes in Ethiopia from 20 precipitation data products.  
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than − 1. The 2002 and 2009 drought episodes also covered large parts 
of the country, but different from the 1984 and 2015 drought events; the 
SPI values did not show continuous geographical pattern for any part of 
the country. Hence, for both drought years (2002 and 2009), the dis-
tribution of SPI values < -1 showed irregular geographical pattern. In 
addition to this, large areas of the southwestern part of the country in 
2002 and southeastern part in 2009 were drought free. Different from 
the previous three major drought years, the 2015 drought occurred over 
specific parts of the country (central and northeastern). As shown in 
Fig. 2a the southeast, south and western parts of the country were not 
affected by the 2015 drought. There are also few pocket areas in the 

northeastern part of the country, where the SPI value was greater than 
− 1 for that drought year. 

The performance of the 20 gridded precipitation products was 
inconsistent in representing those four major drought events (Fig. 2b-u). 
Although there were variations among the data products, eight out of 
the 13 precipitation products covering the 1980s better captured the 
1984 drought. These were CHIRP, CHIRPS, CRU, FLDAS, GPCC, PREC/ 
L, TAMSAT and TerraClimate. CHIRP and CRU in the northwestern and 
GPCC and PREC/L in the southeastern parts of Ethiopia failed to capture 
the same drought episode. On the other hand, PREC/L, TAMSAT and 
TerraClimate amplified the severity and geographical continuity of the 

Fig. 2. (continued). 
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Fig. 2. (continued). 
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same drought event in the northwestern part of Ethiopia. Although, 
drought intensity was less emphasized, ERA5 also showed some skill in 
some parts of the country. CPC, GLDAS, MERRA2 and PERSIANN/CDR 
were poor in representing the 1984 drought. Almost all the products 
captured the 2002 drought at least for some part of the country. But, it 
was only MERRA2 that was able to represent the national scale drought 
occurrence, although severity of the drought was exaggerated for 
drought free pocket areas compared to the reference data. ARC2, 
CHIRPS, ERA5, GPCC and TAMSAT captured the 2002 drought for the 
central and northern parts of the country. Other five data products 
(CHIRP, CRU, FLDAS, GPM-IMERG, RFE2 and TerraClimate) had good 
performance over central Ethiopia. It is important to note that all the 
data products well represented the absence of drought in the south-
western part of the country in 2002. 

The 2009 drought was captured by seven of the data products that 
include AIRS, CHIRPS, ERA5, GPM-IMERG, PERSIANN/CDR, PER-
SIANN/CCS and TRMM-3B43. Four of these (AIRS, ERA5, PERSIANN 
and TRMM-3B43) exaggerated intensity of the drought, compared to the 
reference data (Fig. 2a). FLDAS, GPCC, PERIANN, RFE2 and TAMSAT 
also showed good skills in representing the 2009 drought, although they 
missed capturing it over some specific areas. For example, GPCC and 
FLDAS failed to capture the drought in southeastern Ethiopia, and 
PERSIANN failed to capture it in the southwest, RFE2 in the northwest 
and TAMSAT in the south and southwest. Six products (CPC, CRU, 
GLDAS, MERRA2, PREC/L and TerraClimate) showed poor skill in 
capturing the 2009 drought. Nine products that include AIRS, CHIRP, 
CHIRPS, ERA5, FLDAS, PERSIANN/CCS, PERSIANN/CDR, TAMSAT and 
TRMM-3B43 accurately captured the 2015 drought that occurred over 
the central and northeastern parts of Ethiopia. In addition to these, CPC, 
GLDAS, GMP-IMERG and PERSIANN were able to detect the 2015 
drought over central Ethiopia, while GPCC detected this drought over 
northern Ethiopia. ARC2 and RFE2 captured the geographical pattern of 
the 2015 drought, but the severity underestimated. CRU, MERRA2, 
PREC/L and TerraClimate showed the least performance in representing 
the 2015 drought, compared to the other data products. All products 
except CPC, GLDAS, PERSIANN/CDR, GPM-IMERG and TRMM-3B43 
detected areas that were not affected by the 2015 drought (the west-
ern, southern and southeastern parts of the country). 

3.2. Correlation analysis 

We computed the Spearman’s correlation coefficient between the 21 
precipitation data products and the two reference datasets using SPI 
values generated at 3- and 12-month time scales. Although, the 

Ethiopian gridded rainfall data was not independent to most gauge 
observation considered in this study, we evaluated the agreement be-
tween the Ethiopian gridded precipitation product and gauge records 
obtained from 126 stations. We present the average correlation value in 
Fig. 3. The spatial distribution of the correlation coefficients is shown in 
Fig. 4a-r for the 3-month and Fig. 5a-r for the 12-month droughts. The 
average correlation values presented in Fig. 3 showed the presence of 
significant differences among the data products in representing drought 
events over Ethiopia. All the studied precipitation products showed 
better performance in capturing the occurrence of short-term drought 
(3-month) than the relatively long-term (12-month) drought occur-
rences. As expected, the maximum correlation value was found between 
the Ethiopian gridded data and the reference stations, both for the 3- 
month (0.94) and 12-month (0.86) time scales. Of the 20 precipitation 
data products, CHIRPS followed by FLDAS and GPCC showed better 
agreement with the reference data, both for 3- and 12-month time scales. 
The mean correlation values for these data products were 0.91, 0.90 and 
0.87 for the 3-month SPI time series, respectively. For the 12-month SPI 
time series, the mean correlation coefficients were 0.74 for CHIRPS and 
FLDAS and 0.71 for GPCC. CPC, PERSIANN/CCS and GLDAS showed 
low correlations with the reference data for the 3-month SPI time series. 
The mean correlation values for these data products were 0.50, 0.56 and 
0.58, respectively. AIRS, ARC2 and MERRA2 showed low agreement 
with the reference data for the 12-month SPI time series. Mean corre-
lation coefficients for these data products were 0.28, 0.30 and 0.32, 
respectively. 

Among the four gauge interpolated data products, GPCC was in 
closest agreement with the reference data, while CPC was the least, both 
for 3- and 12-month time scales. The mean correlation values of these 
data products were 0.87 and 0.5 for the 3month and 0.71 and 0.4 for the 
12-month time scales, respectively. Out of the four satellite-only prod-
ucts, PERSIANN and CHIRP for the 3-month and PERSIANN for the 12- 
month time scales showed better agreement with the reference data. The 
mean correlation values were 0.73 for the former two and 0.52 for the 
latter. PERSIANN/CCS for the 3-month and AIRS for the 12-month SPI 
time series showed the least agreement with the reference dataset. The 
mean correlation values for these datasets were 0.56 and 0.28, respec-
tively. Of the four reanalysis data products, FLDAS was in closest 
agreement with the reference data followed by ERA5 for both 3- and 12- 
month SPI time series. GLDAS and MERRA2 revealed the least agree-
ment for the 3- and 12-month time series, respectively (Fig. 3). CHIRPS 
showed the best performance out of the eight multisource precipitation 
products, both for 3- and 12-month time scales. The mean correlation 
value for CHIRPS was 0.91 for the 3-month and 0.71 for the 12-month 

Fig. 3. Correlation coefficients for the 21 precipitation data products.  
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SPI time series. PERSIANN/CDR, TerraClimate and TRMM-3B43 pre-
cipitation products also showed better performance next to CHIRPS. The 
mean correlation coefficients for these data products were 0.80 for the 3- 
month SPI time series, and 0.61, 0.58, and 0.60 for the 12-month SPI 
time series, respectively. The correlation values of RFE2 (0.61) for the 3- 
month and ARC2 (0.30) for the 12-month SPI time series were the least, 
compared to the other eight multisource data products. 

Fig. 4a-r shows the spatial pattern of correlations between the 3- 
month SPI values of the studied data products except for FLDAS and 
GLDAS and the Ethiopian gridded precipitation datasets. FLDAS and 
GLDAS were excluded because of their missing values for some grid cells 
in the northeastern part of the country. Consistent with the mean cor-
relation values presented in Fig. 3, all data products showed better skill 

in representing the spatial patterns of SPI value generated at 3-month 
(Fig. 4a-r) than the 12-month (Fig. 5a-r) time scale for most data 
products. Although there are significant differences among data prod-
ucts in representing the spatial variability of SPI values, most data 
products showed stronger correlation over the southern and south-
eastern and weaker values over the northwestern parts of the country. It 
is CHIRPS that showed the best agreement with the reference data over 
larger parts of the country, both for the 3-month (Figure 4d) and 12- 
month (Fig. 5d) time series. Following CHIRPS data TAMSAT, CHIRP, 
GPCC, GPM-IMERG, and PERSIANN/CDR had relatively better corre-
lation values over extended area, compared to the other data products, 
for the 3-month SPI time series, while GPCC, GPM-IMERG and TAMSAT 
had better performance for the 12-month time series. CPC, CRU and 

Fig. 4. a-r. Spatial patterns of correlation coefficients between the SPI values of 18 precipitation products and the Ethiopian gridded precipitation data for the 3- 
month time scale. Correlation values shown by different colors are statistically significant at 0.05 level. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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PREC/L for the 3-month and AIRS and PERSIANN for the 12-month time 
series showed weakest spatial correlations. It is important to note that 
most of the thermal infra-red derived products that include ARC2, 
CHIRP, RFE2, PERSIANN/CCS and TAMSAT show relatively similar and 
better performance over the southeastern lowland region, which sug-
gests that these data products are better for drier and hotter lowland 
areas. AIRS stands out as very poor. 

3.3. Percent of precipitation departure from the long-term mean for 2009 
and 2015 drought years 

We analysed annual rainfall departure from the long-term mean for 
selected two major drought years (2009 and 2015). Percent of annual 
rainfall deviation from long-term mean for 2009 is presented in Fig. 6a- 
u. As shown by the reference data (Fig. 6a), the total annual precipita-
tion in 2009 was below normal over most part of Ethiopia. However, the 
negative precipitation departure was not the same across the country. 
The 2009 rainfall amount in drought affected areas (areas with SPI <=-1 
in Fig. 2a) was less than − 40% of the long-term mean. Most of these 

Fig. 5. a-r. Spatial distribution of correlation coefficients between the SPI values of 18 precipitation products and the Ethiopian gridded precipitation data for the 12- 
month time scale. Correlation values shown by different colors are statistically significant at 0.05 level. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

M.A. Degefu et al.                                                                                                                                                                                                                              



Weather and Climate Extremes 35 (2022) 100416

12

areas are found in the north, east and southeast Ethiopia. The negative 
rainfall departure was larger (less than − 60% of the mean) for some 
areas and most of these areas are found in the northern and eastern parts 
of the country. In contrast, the 2009 rainfall was above normal for some 
pocket areas, which are located in the western and north-central parts of 
the country. 

Although the degree of deviation is different between data products, 
all precipitation products, except PREC/L show negative anomalies for 
2009 annual rainfall over large parts of the country. ARC2, CPC, GLDAS, 
PERSIANN/CCS, RFE2 and TRMM-3B43 precipitation products 
demonstrate better performance as compared to the reference data by 
capturing both the positive and negative rainfall deviations and its 
irregular spatial patterns. Different from the reference data shown in 
Fig. 6a, all these precipitation products exaggerate the rainfall deficit 

over southeast Ethiopia. In contrast, the rainfall deficit of less than 
− 40% of the mean is observed in pocket areas by the reference data not 
well represented by ARC2 and RFE2 in the northwest, by ARC2, PER-
SIANN/CCS and TRMM-3B43 in the west and northwest and by GLDAS 
in the northeast Ethiopia. CPC also did not capture well the negative 
rainfall anomaly for the north-central highland of Ethiopia. On the other 
hand ERA5, PERSIANN and PERSIANN/CDR are relatively good in 
representing the ranges of negative anomalies, but these data did not 
represent well positive rainfall anomalies observed at pocket areas. 
Compared to the reference data, these data products exaggerate areas 
with rainfall deficit of less than − 40% of the long-term mean. The other 
precipitation products that include AIRS, CHIRPS, FLDAS, GPCC, GPM- 
IMERG, MERRA2 and TAMSAT did not effectively capture the rainfall 
anomalies of less than − 40% of the mean and those pocket areas that 

Fig. 6. a-u. Spatial distribution of annual rainfall departure from the mean in percent for 2009 drought year.  
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have positive rainfall anomalies. Similarly, areas with rainfall deficit of 
less than 20% of the long-term mean were not adequately captured by 
CHIRP and TerraClimate precipitation products. 

Fig. 7a-u shows the spatial distribution of rainfall anomalies for the 
2015 drought year. As shown by the reference data (Fig. 7a), the 2015 
rainfall was below normal over Ethiopia, except for southern, south-
eastern and pocket areas in the north-central highland parts of the 
country. Negative rainfall anomalies of less than − 20% of the long-term 
mean occurred in the central and northeastern parts of Ethiopia. The 
results show that almost all precipitation data products (Fig. 7b-u), 
except PREC/L show negative rainfall anomalies for drought affected 
areas of the central and northeast Ethiopia (Fig. 2a), though there are 
variations between the different data products. ARC2, CHIRPS, CPC, 
ERA5, FLDAS, GLDAS, MERRA2, the three PERSIANN data, FRE2 and 
TRMM-3B43 precipitation products show better performance by 
capturing the negative rainfall anomalies as shown by the reference 

data. AIRS, CHIRP, GPM-IMERG and TAMSAT are also relatively good as 
they are able to represent rainfall deficit of up to 40% of the long-term 
mean. In contrast, PREC/L followed by CRU, GPCC and TerraClimate did 
not effectively represent areas that received less than − 20% of the long 
term mean. Similarly, some of the data products that showed better 
performance in the other areas (e.g. ARC2, CHIRP, CHIRPS, FLDAS, 
GLDAS, MERRA2, PERSIANN, PERSIANN/CCS, RFE2 and TAMSAT) 
missed to represent the negative rainfall anomalies for the western and 
northwestern parts of the country. On the other hand, it is important to 
mention that most of the precipitation products showed good perfor-
mance in representing the positive rainfall anomalies observed in the 
reference data for the southern and southeastern parts of Ethiopia, 
although the positive rainfall anomalies for some data products (e.g. 
ARC2, ERA5, GLDAS, MERRA2 and TAMSAT) is over estimated. In 
contrast, the other data products that include CPC, GLDAS, PERSIANN/ 
CDR, PREC/L, RFE2 and TRMM-3B43 were not good in capturing the 

Fig. 7. a-u. Spatial distribution of annual rainfall departure from the mean in percent for 2015 drought year.  
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positive rainfall anomalies for the southern part of the country. 

3.4. Spatial variability of mean annual and standard deviation of 
precipitation products 

We further evaluated performance of the data products for their 
capacity in representing the spatial patterns of mean annual and stan-
dard deviation of precipitation over Ethiopia. As shown by the reference 
data (Fig. 8a), the long-term mean annual rainfall varies between less 
than 500 mm over the northeastern and southern lowlands and greater 
than 2 500 mm over the western and southwestern highlands. Generally, 
the mean annual rainfall amount decreases as one moves from western 
and southwestern highlands to the northeast and southeastern parts of 
the country. It is also observed that the proportion of areas that have 
high mean rainfall amount (>2 500 mm) is relatively smaller as 
compared to areas that have lower (<500 mm) mean annual rainfall 

amount. 
The results in Fig. 8a-u shows that most of the precipitation products 

are able to represent the general spatial locations for high and low mean 
annual rainfall. However, they showed quite different performance and 
or biases in representing the mean annual rainfall amount, particularly 
for areas (western and southwestern Ethiopia) that receive high rainfall 
amount. Generally, CHIRP followed by CHIRPS and TAMSAT rainfall 
products show better agreement to the reference data in capturing the 
spatial distribution of mean annual rainfall over Ethiopia. In contrast, 
AIRS, ARC2, CPC, CRU, ERA5 and RFE2 precipitation products show 
least performance in representing mean annual rainfall of greater than 1 
500 mm for the western and southwestern parts of the country. These 
data products underestimated the mean annual rainfall of between 500 
and 1500 mm over these areas. Similarly, the other data products that 
include FLDAS, GLDAS, GPCC, GPM-IMERG, the three PERSIANN 
datasets, PREC/L, TerraClimate and TAMSAT precipitation products did 

Fig. 8. a-u. The spatial distribution of mean annual rainfall for 21 data products.  
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not capture the mean annual rainfall of greater than 2000 mm, indi-
cating that these products underestimate the mean annual rainfall of 
between 500 and 1 000 mm. All the studied data products showed good 
performance in representing the lowest mean annual rainfall (<500 
mm) over the northeast and southeastern parts of the country. 

The spatial distribution of standard deviation for annual rainfall time 
series for all precipitation products is shown in Fig. 9a-u. As shown by 
the reference data (Fig. 9a), the standard deviation of annual rainfall is 
relatively higher over the highland part of the country, where the mean 
annual rainfall is relatively higher, and lower over lowland parts, where 
mean annual rainfall is low. The standard deviation over the highland 
regions, particularly in the southwest Ethiopia varied between 200 mm 
and 900 mm. However, high rainfall deviation (>500 mm) is observed 
for isolated pocket areas. In contrast, the standard deviation over low-
land parts, particularly the northeast and southeast Ethiopia is not more 
than 100 mm. 

The spatial distribution of standard deviation for the studied data 
products is shown in Fig. 9b-u. The result shows that GLDAS followed by 
MERRA2 and CPC are relatively better in representing the wider ranges 
of rainfall deviation from long-term means. However, they did not show 
the same irregular pattern shown by the reference data. In addition to 
this, the rainfall deviation shown by these three precipitation products 
for the northern and northwestern Ethiopia is not in agreement with the 
reference data. The standard deviation of annual rainfall in these areas is 
over estimated by 300–600 mm. Furthermore, it is only GLDAS that is 
able to show areas with standard deviation of greater than 600 mm. 
ARC2, PERSIANN/CCS and RFE2 precipitation products are also able to 
represent areas that have standard deviation of less than 400 mm in the 
western part of Ethiopia. Different from the reference data, these data 
products overestimate the rainfall deviation for the northwestern part of 
Ethiopia. The standard deviation for the other precipitation products is 
less than 200 mm. It is less than 100 mm over most parts of the country 

Fig. 9. a-u. The spatial distribution of standard deviation for annual rainfall for 21 data products.  
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for AIRS and ERA5. On the other hand, most of the precipitation data 
products show better skill in capturing the low standard deviation 
observed in the northeastern and southeastern lowland parts of the 
country. 

4. Discussion and conclusion 

We evaluated 20 global and regional scale precipitation products for 
their drought monitoring performance over Ethiopia. These precipita-
tion products are different in terms of spatial resolution (0.04◦–1◦), re-
cord length and the techniques of data construction: 1) gauge- 
interpolated (CPC, CRU, GPCC and PREC/L), 2) retrieved from satel-
lite observation (AIRS, CHIRP, PERSIANN and PERSIANN/CCS, 3) 
reanalysis (ERA5, FLDAS, GLDAS and MERRA2) and 4) merged from 
various sources (ARC2, CHRIPS, GPM-IMERG, PERSIANN/CDR, RFE2, 
TAMSAT, TerraClimate and TRMM-3B43). We used the Ethiopian 
gauge-satellite merged precipitation data at 0.04◦ spatial resolution and 
in-situ records of 126 stations for ground truthing. We used a quasi- 
objective (visual inspection) and the Spearman’s correlation analysis 
to evaluate the data products. 

The results showed that the studied precipitation products differ in 
representing the geographical distribution and severity of drought epi-
sodes and the climatology of the study area as shown by the long-term 
mean and the standard deviation of the data series. CHIRPS followed 
by FLDAS and GPCC showed relatively better and comparable with each 
other performance in representing the spatial distribution of major 
drought events, as also indicated by the Spearman’s correlation coeffi-
cient (Table 2). CHIRP, ERA5, PERSIANN/CDR, TAMSAT and TRMM- 
3B43 showed better skill for two out of the four major drought years 
considered. These datasets also showed some skill in capturing the 
remaining two major droughts for some part of the country. In addition 
to these, AIRS, PERSIANN/CCS and TRMM-3B43 that covered the period 
2000–2018 accurately represented two out of the three droughts. CRU, 
PREC/L, MERRA2, GPM-IMERG and TerraClimate captured well only 
one of the four droughts, while CPC and GLDAS showed the worst 
performance. Regarding rainfall departures from long-term mean for the 
2009 and 2015 drought years, all the studied precipitation products 
except PREC/L showed negative anomalies for most drought affected 
areas, but showed different performance in capturing areas with rainfall 
departures of less than − 20% of the mean. Some of the data products 
that include ARC2, ERA5, GLDAS, the three PERSIANN datasets, RFE2 
and TRMM-3B43 for both drought years and CHIRPS, CPC, FLDAS and 
MERRA2 for the 2015 drought year showed better performance in 
capturing areas with rainfall departures of <40% from the long-term 
mean. 

On the other hand, most of the studied data products are in agree-
ment with the reference data in representing the geographical locations 
for high (western and southwestern Ethiopia) and low (northeastern and 
southeastern lowlands) mean annual rainfall areas. The mean annual 
rainfall is underestimated by most data products over high rainfall re-
gions (western and southwestern Ethiopia). Only CHIRP followed by 
CHIRPS, MERRA and TAMSAT precipitation products are relatively 
better in representing areas with mean annual rainfall of greater than 1 
500 mm. In contrast, AIRS, CRU, CPC, ERA5, and RFE2 precipitation 
products showed weak performance. The standard deviation of annual 
rainfall was not captured satisfactorily by most of the data products and 
it was generally lower than that of the reference data except for GLDAS, 
CPC, MERRA2, PERSIANN/CCS, RFE2 and ARC2. This indicates that the 
data products were better in representing annual rainfall amounts 
around the mean, but are not good at estimating the extremes; i.e., high 
and low annual rainfall amounts. 

Performance of precipitation products in drought detection is 
generally determined by their capability in representing amount and 
geographical distribution, and its ability to capture high and low in-
tensity rainfall events (Le Coz and van de Giesen, 2020). Precipitation 
products that are recommended for drought monitoring and operational 

activities are those that have good representation of small rainfall 
amounts, low overestimation, and good representation of spatial dis-
tribution of low precipitation amount and events (Maidment et al., 
2014; Le Coz and van de Giesen, 2020). Previous research works have 
reported a complex picture of performance for different rainfall products 
(Dinku et al., 2007, 2009, 2011, 2018; Diro et al., 2009; Hirpa et al., 
2010; Worqlul et al., 2014; Bayissa et al., 2017; Sahlu et al., 2017). This 
is reconfirmed by the results of our study. The underestimation of mean 
annual rainfall found by our study for most data products over the 
highland areas is also in agreement with those previous studies. On the 
other hand, Dinku et al. (2008) found monthly precipitation data of 
CRU, CPC and GPCC to be in good agreement with selected reference 
stations over Ethiopia for the period 1981–2000, but this was not sup-
ported by our finding. In this study, it was only GPCC that showed su-
perior capacity in capturing droughts among the gauge interpolated data 
products. Similarly, many recent studies that include Bayissa et al. 
(2017), Ayehu et al. (2018), Dinku et al. (2018) and Belay et al. (2019) 
reported that CHIRPS precipitation data outperforms in representing the 
various rainfall characteristics considered at multiple time scales (daily, 
decadal, monthly and seasonal) than many other satellite and model 
data products that they used for their study. Our study also found that 
CHIRPS is a relatively good precipitation data product that showed 
better performance in capturing drought development followed by 
FLDAS and GPCC. 

Dinku et al. (2011, 2014) note that in the mountainous east African 
region, the density of observation stations is low and unevenly distrib-
uted, hence the estimated areal average rainfall through interpolation 
from point data may not provide accurate estimate. Even worse, 
observation points have declined in number over this and other parts of 
Africa after the second half of the 20th century (Harris et al., 2014; 
Dinku et al., 2018; Le Coz and van de Giesen, 2020). For example, the 
average number of stations used to produce the GPCC v7 data over Af-
rica was reduced from over 3 000 in the 1960s to less than 500 in 2000s 
(Dinku et al., 2014; Zhao and Ma, 2019). Similarly, the average number 
of stations used to produce CRU precipitation data decreased from 
around 2000 in the 1960s to less than 200 in the post 2000s (Harris 
et al., 2014). For Ethiopia, the number of stations used by CPC, CRU and 
GPCC declined, on average, from 20 per 2.5◦ grid box in 1981 to less 
than 5 in the post 2000 (Dinku et al., 2008). The average number of 
stations used to construct PREC/L precipitation at the global scale 
declined from about 17,000 in 1970 to about 2000 in 1996, and no new 
station was added for interpolation since 1997 (Chen et al., 2002). The 
implication is that the representativeness of gauge interpolated data 
products to various rainfall characteristics decreases with the decreasing 
station numbers used for the interpolation. It is also evident in our study 
that except CPC, the other three gauge-interpolated precipitation 
products (CRU, PREC/L and TerraClimate) show better performance in 
capturing the magnitude and spatial patterns of the 1984 drought than 
the 2002, 2009 and 2015 droughts. Besides, the quality of data and the 
different interpolation methods are also sources of discrepancies among 
gauge interpolated data products (Le Coz and van de Giesen, 2020). 

Performance evaluation of satellite based and satellite-gauge merged 
precipitation products showed discrepancies among previous studies as 
well. For example, according to Dinku et al. (2007) TRMM-3B43 and 
TAMSAT showed reasonably well performance over Ethiopia, while 
ARC2 and RFE2 revealed poor performance. Similarly, Young et al. 
(2014) reported that TAMSAT has good performance in detecting rainy 
events over Ethiopia, while it underestimated rainfall amounts. PER-
SIANN showed reasonable accuracy over lowland regions, but under-
estimated over highland area (Romilly and Gebremichael, 2011). 
Gebremichael et al. (2017) on the other hand has found good perfor-
mance for CHIRPS, TRMM-3B43 and RFE2 precipitation products in the 
Tekezie-Atbara River Basin, northern Ethiopia. These study also indi-
cated that these satellite based products underestimated the rainfall 
amount over highland areas (>2 500 m a.s.l) and overestimated over 
lowland regions by 35%. Many recent studies that include Bayissa et al. 
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(2017); Gebremichael et al. (2017); Ayehu et al. (2018); Dinku et al. 
(2018); Lemma et al. (2019) and Belay et al. (2019) identified CHIRPS as 
the best satellite based precipitation product over Ethiopia. For example, 
Dinku et al. (2018) reported that CHIRP and CHIRPS precipitation 
products are significantly superior than ARC2 and TAMSAT precipita-
tion products at the dekadal and monthly time scales, while TAMSAT is 
better in representing daily precipitation. Lemma et al. (2019) identified 
CHIRPS followed by TRMM-3B43 to have good performance in repre-
senting rainfall amount and regimes for three wet seasons (June–Sep-
tember, February–May and September–November). According to this 
study, CMORPH, TAMSAT and ARC2 showed moderate performance. 
For Upper Blue Nile Basin, CHIRPS showed better performance over 
TAMSAT and ARC2 precipitation products (Ayehu et al., 2018). Most of 
the previous studies highlight that most satellite products showed a 
tendency to underestimate and overestimate rainfall amounts in high-
land and lowland parts of Ethiopia, respectively (Bitew and Gebre-
michael, 2009; Hirpa et al., 2010; Dinku et al., 2011; Young et al., 2014; 
Gebremicael et al., 2017). 

Poor performance (large underestimation) was reported for ARC2 
and RFE2 for the daily and dekadal rainfalls across the country (Dinku 
et al., 2011). Dinku et al. (2008, 2011) and Young et al. (2014) argued 
that satellite rainfall retrieval algorisms have difficulty to accurately 
capture low convection warm-cloud orographic rainfall formation pro-
cess and difficulty of setting accurate thresholds to distinguish 
rain-giving from non-rain giving clouds. On the other hand, the over-
estimation of rainfall over lowland areas is attributed to evaporation of 
sub-cloud before giving rainfall in the region (Dinku et al., 2008) and 
cold temperature on the top of cirrus non-raining clouds (Young et al., 
2014). In addition to these, satellite-based products differ each other by 
the type of data input (whether it is IR, PWM or the combination of the 
two or with gauges) used by their algorithms deriving the final precip-
itation estimates. As consequence, the satellite-based product error can 
be partially attributed to the error in the retrieval algorithm (i.e., esti-
mating precipitation from the sensors measurements) and partially due 
to the merging algorithm (i.e., combining the different estimates in the 
final precipitation estimate) (Le Coz and van de Giesen, 2020). In our 
study, CHIRPS data out performs all the satellite based precipitation 
products in representing major drought events, drought frequency and 
in correlation values. TRMM-3B43, TAMSAT, PERSIANN/CDR, 
GPM-IMERG, CHRIP and PERSIANN showed medium comparable per-
formance in terms of correlation values. 

The other possible reason for data performance discrepancies as 
shown in Fig. 10a and b is variation in the spatial resolution of the 
precipitation products. Most precipitation data products with relatively 
higher resolution (<0.3◦) had better performance compared to precip-
itation products which had relatively low resolution, both for 3- and 12- 
month drought time series. 

In conclusion, our results demonstrate the need for comprehensive 
evaluation of global and regional precipitation data products before 
using them for specific research or operational activities. Performance 

evaluation evidently provides important information and guidance for 
selecting the most appropriate product specific applications such as for 
drought monitoring by policy and development communities. A follow 
up paper (Degefu and Bewket, submitted to Weather and Climate Ex-
tremes), has used statistical indices that include Probability of Detection 
(POD), Missing Rate (MR), False Alarm Ratio (FAR) and Critical Success 
Index (CSI) to undertake verification of how these data products could 
detect the 3- and 12-month drought episodes over Ethiopia. 

Authors’ contributions 

All authors contributed to the study conception and design. Material 
preparation, data collection and analysis and first draft writing were 
performed by Mekonnen Adnew Degefu. Research project management, 
supervision, second draft wring and edition were made by Woldeamlak 
Bewket. Yosef Amha has engaged in conceptualization of the paper, 
visualization, edition and validation activities. All authors read and 
approved the final manuscript. 

Submission declaration and verification 

The submission is the independent work of the authors. It has not 
been submitted and not published or accepted for publication, and is not 
under consideration for publication, in another journal or book. The 
submission has been approved by all relevant authors, and all persons 
entitled to authorship have been so named. All authors have seen and 
agreed to the submitted version of the manuscript. 

Availability of data and material 

All the data inputs in for our study, except for the reference (gridded 
and point precipitation) data products obtained from globally open data 
sources, and one can easily access using the given data portal links in the 
paper. However, the reference data that we obtained from National 
Meteorological Agency are confidential by policy. But we can submit the 
processes data upon request. 

Ethics approval 

Not applicable to this manuscript as there was no potential conflict of 
interest, not involved human/or animals and no other participant that 
need informed consent. 

Consent to participate 

Not applicable to this manuscript as this study did not involve human 
participants that need informed consent. 

Fig. 10. a & b. Performance of precipitation data in detecting the a) 3- and b) 12-month drought events as a function of products spatial resolutions.  

M.A. Degefu et al.                                                                                                                                                                                                                              



Weather and Climate Extremes 35 (2022) 100416

18

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work was supported through the Climate Research for Devel-
opment (CR4D) Postdoctoral Fellowship [CR4D-19-19] implemented by 
the African Academy of Sciences (AAS) in partnership with the United 
Kingdom’s Department for International Development (DfID) Weather 
and Climate Information Services for Africa (WISER) programme and 
the African Climate Policy Center (ACPC) of the United Nations Eco-
nomic Commission for Africa (UNECA). Statements made and views 
expressed in this work are solely the responsibility of the authors. We 
also acknowledge the National Meteorological Agency of Ethiopia for 
providing the monthly precipitation products for the study. 

References 

Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., Hegewisch, K.C., 2018. TerraClimate, a 
high-resolution global dataset of monthly climate and climatic water balance from 
1958–2015. Sci. Data 5, 170191. 

AghaKouchak, A., Farahmand, A., Melton, F.S., Teixeira, J.M., Anderson, C., Wardlow, B. 
D., Hain, C.R., 2015. Remote sensing of drought: progress, challenges and 
opportunities. Rev. Geophys. 53, 452–480. 

Albergel, C., Dutra, E., Munier, S., Calvet, J., Munoz-Sabater, J., de Rosnay, P., 
Balsamo, G., 2018. ERA-5 and ERA-Interim driven ISBA land surface model 
simulations: which one performs better? Hydrol. Earth Syst. Sci. 22, 3515–3532. 

Ashouri, H., Hsu, K.L., Sorooshian, S., Braithwaite, D.K., Knapp, K.R., Cecil, L.D., 
Nelson, B.R., Prat, O.P., 2014. PERSIANN–CDR: daily precipitation climate data 
record from multisatellite observations for hydrological and climate studies. Bull. 
Am. Meteorol. Soc. 96, 197–210. 

Aumann, H.H., Gregorich, D.T., Gaiser, S.L., Chahine, M.T., 2004. Application of 
Atmospheric Infrared Sounder (AIRS) Data to Climate Research. Proc. SPIE 5570, 
Sensors, Systems, and Next-Generation Satellites VIII, (4 November 2004).  

Ayehu, G.T., Tadesse, T., Gessesse, B., Dinku, T., 2018. Validation of new satellite rainfall 
products over the upper Blue Nile Basin, Ethiopia. Atmos. Meas. Tech. 11, 
1921–1936. 

Bayissa, Y., Tadesse, T., Demisse, G., Shiferaw, A., 2017. Evaluation of satellite-based 
rainfall estimates and application to monitor meteorological drought for the Upper 
Blue Nile Basin, Ethiopia. Rem. Sens. 9, 669. 

Beck, H.E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A.I.J.M., Weedon, G.P., 
Brocca, L., Pappenberger, F., Huffman, G.J., Wood, E.F., 2017. Global-scale 
evaluation of 22 precipitation datasets using gauge observations and hydrological 
modeling. Hydrol. Earth Syst. Sci. 21, 6201–6217. 

Belay, A.S., Fenta, A.A., Yenehun, A., Nigate, F., Tilahun, S.A., Moges, M.M., Dessie, M., 
Adgo, E., Nyssen, J., Chen, M., Van Griensven, A., Walraevens, K., 2019. Evaluation 
and application of multi-source satellite rainfall product CHIRPS to assess spatio- 
temporal rainfall variability on data-sparse western margins of Ethiopian Highlands. 
Rem. Sens. 11, 2688. 

Chen, M., Xie, P., Janowiak, J.E., Arkin, P.A., 2002. Global land precipitation: a 50-yr 
monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266. 

Degefu, M.A., Rowell, D.P., Bewket, W., 2017. Teleconnections between Ethiopian 
rainfall variability and global SSTs: observations and methods for model evaluation. 
Meteorol. Atmos. Phys. 129, 173–186. 

Dinku, T., Block, B., Sharoff, J., Thmoson, M., 2014. Bridging critical gaps in climate 
services and applications in Africa. Earth Perspect. 1, 1–15. 

Dinku, T., Ceccato, P., Connor, S.J., 2011. Challenges of satellie rainfall estimation over 
mountainous and arid parts of East Africa. Int. J. Rem. Sens. 32, 5965–5979. 

Dinku, T., Ceccato, P., Grover-Kopec, E., Lemma, M., Connor, S.J., Ropelewski, C.F., 
2007. Validation of satellite rainfall products over East Africa’s complex topography. 
Int. J. Rem. Sens. 28, 1503–1526. 

Dinku, T., Connor, S.J., Ceccato, P., Ropelewski, C.F., 2008. Comparison of global 
gridded precipitation products over a mountainous region of Africa. Int. J. Climatol. 
28, 1627–1638. 

Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H., Ceccato, P., 
2018. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. 
R. Meteorol. Soc. 144, 292–312. 

Dinku, T., Hailemariam, K., Maidement, R., Tarnavsky, E., Connor, S.J., 2013. Combined 
use of satellite estimates and raingauge observations to produce high-quality 
historical rainfall time series over Ethiopia. Int. J. Climatol. 34, 2489–2504. 

Diro, G.D., Grimes, D.I.F., Black, E., O’Neill, A., Pardo-Iguzquiza, E., 2009. Evaluation of 
reanalysis rainfall estimates over Ethiopia. Int. J. Climatol. 29, 67–78. 

Duan, Z., Liu, J., Tuo, Y., Chiogna, G., Disse, M., 2016. Evaluation of eight high spatial 
resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal 
and spatial scales. Sci. Total Environ. 573, 1536–1553. 

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., 
Rowland, J., Harrison, J., Hoell, A., Michaelsen, J., 2015. The climate hazards 

infrared precipitation with stations—a new environmental record for monitoring 
extremes. Sci. Data 2, 150066. 
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