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Abstract 
Rainfall is crucial for many applications e.g. agriculture, health, water re-
sources, energy among many others. However, quantitative rainfall estima-
tion is normally a challenge especially in areas with sparse rain gauge net-
work. This has introduced uncertainties in rainfall projections by climate 
models. This study evaluates the performance of three representative concen-
tration pathways, RCP i.e. 4.5, 6.0 and 8.5 over Uganda using the Weather 
Research and Forecasting (WRF) model. It evaluates the model output using 
observed daily rain gauge data over the period 2006-2018 using Pearson cor-
relation; relative root mean square error; relative mean error and skill scores 
(accuracy). It also evaluates the potential improvement in the performance of 
the WRF model with respective RCPs by applying bias correction. The bias 
correction is carried out using the quantile mapping method. A poor correla-
tion with observed rainfall is generally found (−0.4 to +0.4); error magnitudes 
in the ranges of 1 to 3.5 times the long-term mean are observed. The RCPs 
presented different performances over different areas suggesting that no one 
RCP is universally valid. Application of bias correction did not produce rea-
listic improvement in performance. Largely, the RCPs underestimated rainfall 
over the study area suggesting that the projected rainfall cases under these 
RCPs could be seriously underestimated. However, the study found RCP8.5 
with slightly better performance and is thus recommended. Due to the gener-
al weak performance of the RCPs, the study recommends re-evaluating the 
assumptions under the RCPs for different regions or attempt to improve 
them using data assimilation. 
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1. Introduction 

Developing countries e.g. Uganda normally suffer from the adverse impacts of 
extreme climate. Studies on future climates e.g. Tiyo et al. [1], Okonya et al. [2], 
Ongoma et al. [3], among others have generally projected increasing magnitudes 
and frequency of extreme weather events. Unfortunately, developing countries 
have lower adaptive capabilities [4] [5] [6] and less developed early warning 
mechanism [3] [6] which make them vulnerable to the negative impacts asso-
ciated with these extreme events. The changes in climate have been attributed to 
increasing pollution levels and changes in environment due to changes in land 
cover and land use. Consequently, the concentration of atmospheric pollutants 
has been conceptualized into Representative Concentration Pathways (RCP) [7]. 
Four RCPs have been proposed, namely RCP2.6, RCP4.5, RCP6.0 and RCP8.5 
[3] [7]. 

Future climate studies using General Circulation Models (GCMs) e.g. Gianni-
ni et al. [8], Kisembe et al. [9] among others, have projected enhanced wet con-
ditions over East Africa. This is due to the weakening of moisture convergence 
over the Congo basin [8] [10]. The GCMs are normally used for simulating the 
climate on different spatial scales, i.e. mesoscale, regional and global scale [9] in-
cluding different time-scales i.e. days, weeks, months, years and decades. How-
ever, these GCMs have been found to have coarser horizontal resolutions which 
are not useful for regional high impact studies [5] [9] [11]. An evaluation of se-
lected 10 models within CODEX by Kisembe et al. [9] revealed that most region-
al climate models (RCM) reproduce the inter-annual rainfall variability but 
present a poor skill in reproducing the rainy seasons especially the March-May 
rainfall season. Additionally, dry days are normally overestimated and presented 
as drizzles in these numerical models [10] [12] [13]. 

An approach normally proposed to address the limitations of the GCM is us-
ing bias correction. It has been used in many studies e.g. Sharma et al. [14], 
Ghimire et al. [15], Noor et al. [7], Cannon et al. [16], Monaghan et al. [17], Pia-
ni et al. [13] among others. By carrying out statistical bias correction on daily 
rainfall, Piani et al. [13] found an improvement in the mean and representation 
of extreme events like droughts. Ghimire et al. [15] argue that bias correction 
results in reduced biases and improves accuracy of simulations. For this reason, 
Noor et al. [7] evaluated the bias correction methods i.e. linear scaling, gamma 
quantile mapping, generalized quantile mapping, and power transformation and 
noted that the power transformation method was the most suitable for bias cor-
rection of the GCM. However, Myo et al. [18] and Ghimire et al. [15] found the 
linear scaling method to produce the best performance and recommended it 
for hydrological studies at river basins. On the other hand, Mahmood & Mu-
kand [19], and Sharma & Kumar [14] recommended the quantile mapping 
bias correction method. This could suggest that no one method is universally 
valid. 

Additional efforts to improve the projections of GCMs using dynamical 
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downscaling of RCMs have been proposed. This method has also been used in 
many studies e.g. Ouédraogo et al. [5], Kisembe et al. [9], Nalukwago et al. [20], 
among others. The RCMs are useful in down-scaling the coarse resolution of the 
GCMs to a higher resolution which is potentially useful for high impact studies 
[9] [21]. This is because the RCMs have a better representation of local features 
e.g. mountains [5] [9], land-cover and water bodies than the GCM [9] [21]. 
However, these RCMs normally inherit biases from the parent GCM [5] [21] 
which predisposes them to require robust validation over areas of interest before 
they can be reliably used. 

It is therefore necessary to have a realistic representation of climate fields es-
pecially rainfall in climate models for high impact studies [11]. This is because 
understanding the physical basis of the climate models will help us to advance 
better prediction as argued by Giannini et al. [8]. Equally important is to have 
deeper understanding of the biases of these climate models at different spatial 
and temporal scales. For this reason, Piani et al. [13] has recommended this to 
enable high impact studies for improved vulnerability assessment. Additionally, 
the changing frequency of extreme weather events requires a detailed assessment 
to build realistic future occurrences [4] [5] [22]. 

In order to enhance our understanding of the future climatic evaluations, a 
couple of studies using RCPs/GCMs and experiments e.g. CORDEX have been 
proposed and widely carried out. For example, Ongoma et al. [3] evaluated 22 
GCMs under the Coupled Model Inter-comparison Project Phase Five (CMIP5) 
over East African considering RCP8.5. They used gridded satellite rainfall da-
ta-sets from the Global Precipitation Climatology Center. However, this study 
uses observed rainfall data-sets and contends that the RCPs are not universally 
valid. This is what motivated the study and it seeks to answer the question: 
which RCP is realistic for Uganda and how can the uncertainty be decreased for 
future projections. 

2. Materials and Methods 
2.1. Data 

This study used Lateral Boundary Conditions (LBCs) from the National Center 
for Atmospheric Research (NCAR) [17] [23]. It validated the model outputs us-
ing monthly rain-gauge data-sets from the Uganda National Meteorological 
Authority for the period 2006-2018. Like many climatic data-sets in developing 
countries, missing data were found and these were removed from the analyses. 
The LBCs used were obtained from the global bias-corrected climate model 
output data of version 1 of NCAR’s Community Earth System Model (CESM1) 
that participated in CMIP5 [17] [24]. These data-sets are interpolated to 26 
pressure levels and are provided at six hourly intervals and at 1˚ × 1˚ horizontal 
resolution [23] [24]. The variables have been bias-corrected using the European 
Centre for Medium-Range Weather Forecasts Interim Reanalysis for fields from 
1981 to 2005 [17]. The repository (https://rda.ucar.edu/datasets/ds316.1/) pro-
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vides three input files, namely the Representative Concentration Pathway (RCP) 
future scenarios i.e. RCP4.5, RCP6.0 and RCP8.5. The study used these RCPs for 
the period 2006-2018. 

2.2. Study Area 

This study was carried out over Uganda and used 28 study locations as presented 
using Figure 1. Uganda is located within the latitudes: 1˚29'S to 4˚12'N and the 
longitudes: 29˚34'E to 35˚29'E [9] [10]. It is a landlocked country found in the 
eastern part of equatorial Africa [10] [12]. The country is relatively flat in the 
central with a few highland areas; and having mountains in the East (Mt. Elgon; 
Mt. Moroto) and west (Mt. Rwenzori). The country is endowed with fresh water 
bodies, namely Lake Victoria, Albert, Kyoga, Edward, Wamala, George among 
others and has a good climate condusive for agriculture [4] [20] [25]. Most areas 
of the country receive a bimodal rainfall distribution i.e. March-May and Sep-
tember-November with exception of the northern region whose rainfall distribu-
tion tend to be unimodal peaking around August [9] [12] [20]. 

2.3. Study Design 

This study contends that the study carried out by Ongoma et al. [3] used GCM 
in the CMIP5 which were coarse i.e. largely coarse greater than 1.5˚ about 150 
Km × 150 Km horizontal resolution compared to the horizontal resolution used 
in this study i.e. 30 km (about 0.3˚). Therefore, this study designs and runs a 
comparatively higher resolution validation experiment of the RCPs over Uganda 
and uses 28 study locations as presented in Figure 1. Additionally, the study 
carried out by Fotso-Nguemo et al. [27] over a comparatively similar region used 
gridded data-sets but this study uses observed station rainfall data-sets and uses 
comparatively a longer validation period i.e. 13 years (2006-2018). 
 

 
Figure 1. Shows the study area. (a) is the map of Africa showing the location of Uganda. 
(b) is the map of Uganda showing the study area and study locations. This figure is gen-
erated using an R-statistical programming language and the package is provided by [26]. 
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This study first evaluates the performance of the RCPs in reproducing the ob-
served climate patterns over the period 2006-2018 i.e. direct model output by 
running the Weather Research and Forecasting (WRF) model version 3.9 [10] 
[28] with boundary conditions of the three RCPs i.e. RCP4.5, RCP6.0 and 
RCP8.5 [17]. The direct model outputs are then bias corrected using quantile 
mapping (Equation (6)) to investigate any possible improvement in the perfor-
mance as recommended by Sharma et al. [14], Ghimire et al. [15], Noor et al. 
[7], Cannon et al. [16], Monaghan et al. [17], Piani et al. [13] among others. 

In running the WRF model, model the parameterization schemes used are 
adopted from Mugume et al. [29] and are presented using Table 1. These para-
meterization schemes are also used in Ingula et al. [30]. The study domain used 
in this study is shown using Figure 2. This study used single domain at 30 Km × 
30 Km covering the equatorial Africa but analyses are carried out over Uganda 
shown with a red box in Figure 2. 

2.4. Study Methods 

The evaluation of the WRF model performance based on the three RCPs 
(RCP4.5, RCP6.0 & RCP8.5) is done using both continuous scores and categori-
cal scores. The continuous scores comprise of the Pearson correlation coeffi-
cient, r, (Equation (1)) for assessing the relationship between observed and si-
mulated; the relative root mean square error, RMSE (Equation (2)) and relative 
mean error, ME (Equation (3)) for examining the error magnitudes. The cate-
gorical skill scores, namely the accuracy (Equation (4)) are obtained from the 
contingency table (Table 2). 
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where: ip , iO , LTM, and n are the model predicted ith value, observed ith, 
long-term mean, and number of observations respectively. The relative root 
mean square error RMSE (Equation (2)) and the relative mean error, ME (Equa-
tion 3) presented in this study are as percentage of the LTM which is also used 
and recommended by Ongoma et al. [3]. This study used relative root mean 
square error and relative mean error in order to compare the performance 
against long-term mean. 

Additionally, in this paper, the accuracy (i.e. hit rate) is defined as the propor-
tion of hits (i.e. A11, A22 and A33) (Table 2) to total observations. So in this paper 
for a given location, i, the accuracy is: 
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Figure 2. Shows the domain used in the study. While the domain covered the 
entire equatorial region, the main study was over Uganda, the red box inside 
the domain. The figure is generated by run an NCL programming code syntax. 

 
Table 1. Shows the experiment set-up and the parameterization schemes in the study. 

Set-up/Scheme Description 

Grid 
Staggered Arakawa C grid with 33 vertical levels and model top at  
100 hPa [10] [31] 

Vertical coordinate 
Terrain-following vertical coordinate with flexible vertical grid  
spacing [29] [32] 

Integration Runge-Kutta 2nd order integration option [10] [12] [33] 

Cumulus scheme Kain-Fritsch [31] [33] 

Microphysics WRF single moment-6 class scheme. Recommended by [10] [34] 

Longwave Rapid radiative transfer scheme [32] 

Shortwave Dudhia shortwave radiation [35] 

Land surface model Noah Land-Surface Model [36] 

Planetary boundary layer Yonsei University planetary boundary layer scheme [10] [37] 

 
Table 2. Shows the contingency table as used in the study. “Below normal” is total rainfall 
less than 75% of the long-term mean; “Normal” is total rainfall within 75% to 125% of 
long-term mean; and “Above normal” is total rainfall greater than 125% of long-term 
mean. 

 
Model prediction 

Below Normal Normal Above Normal 

Observed 

Below Normal A11 A12 A13 

Normal A21 A22 A23 

Above Normal A31 A32 A33 

 
11 22 33

i
A A A

ACC
n

+ +
=                      (4) 

a hit is defined in this paper as, for example when model prediction is “below 
normal” and the observed is also “below normal” i.e. A11; model prediction is 
“normal” and observation is “normal” i.e. A22; and model prediction is “above 
normal” and observation is “above normal” i.e. A33 as illustrated in Table 2. 

The contingency table used, as presented using Table 2 is based on three cas-
es, namely “below normal”, “normal” and “above normal”. These terms are in 
operational use by UNMA and are defined as captioned in Table 2. The 
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long-term mean monthly rainfall used in the study is presented using Table 3. 
This study also used graphical analysis of line graphs and maps obtained using 
inverse distance weighting interpolation [38] and given by Equation (5). 
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*
ip  is the interpolated precipitation amount from ip  neighboring stations 

weighted with iw  and n is the total of stations used to derive *p . 

2.5. Bias Correction Methods 
A couple of methods for bias correction have been proposed which include:  

 
Table 3. Shows the long-term mean monthly rainfall amount in millimeters (mm) used in the 
study. It is derived from the different publications e.g. dekadal reports issued by UNMA. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Arua 18 37 91 120 128 146 155 217 173 210 125 30 

Buginyanya 45 73 124 217 234 180 190 243 199 217 134 41 

Bushenyi 75 110 110 157 80 46 42 81 120 141 143 121 

Entebbe 90 96 177 274 258 102 67 83 80 111 162 119 

Gulu 17 29 85 166 176 152 169 238 175 187 109 37 

Jinja 66 54 118 191 136 78 65 112 111 159 177 94 

Kabale 65 81 113 140 98 29 20 54 99 111 117 89 

Kakoge 36 41 111 161 137 59 76 101 133 164 128 55 

Kamenyamigo 52 46 116 145 104 39 21 51 87 116 113 76 

Kasese 31 40 116 152 106 54 31 84 64 123 101 68 

Kibanda 52 47 70 137 121 41 19 36 60 82 85 73 

Kitgum 25 23 77 138 148 148 136 154 142 166 81 36 

Kituza 93 65 142 188 127 70 71 116 142 169 188 144 

Kotido 6 33 83 100 105 131 118 84 58 90 7 7 

Kyembogo 13 40 172 167 86 79 63 81 130 204 225 99 

Kyenjojo 25 49 127 179 92 76 67 144 200 139 190 44 

Lira 29 41 91 172 190 126 126 215 168 149 84 43 

Makerere 51 62 113 182 140 75 50 86 101 109 114 97 

Masindi 32 56 107 162 146 97 109 137 141 147 122 48 

Mbarara 45 64 96 123 78 23 20 61 95 105 120 75 

Moroto 10 27 72 120 121 71 122 94 51 47 49 25 

Mubende 32 70 160 178 89 29 49 87 120 106 82 67 

Namulonge 50 61 131 145 116 68 59 90 129 129 111 78 

Ntusi 36 53 96 103 97 24 36 105 127 136 152 72 

Serere 29 28 115 190 192 72 79 123 149 151 123 48 

Soroti 32 56 107 162 146 97 109 137 141 147 122 48 

Tororo 55 78 138 225 224 108 96 118 111 125 109 78 

wedalai 47 45 165 159 158 137 157 168 184 184 213 160 
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scaling [7] [18]; gamma quantile mapping [7]; generalized quantile mapping [7] 
[16] [19]; and power transformation [7], among others. This study has adopted 
the generalized quantile mapping method to examine any potential improve-
ment in the skill as simulated by the WRF model with different initial conditions 
based on the different RCPs (i.e. RCP4.5, RCP6.0 & RCP8.5). Quantitle mapping 
has been proposed by [19] and presented using Equation 6. This method is also 
used and promoted by [14] while assessing the changes in precipitation and 
temperature over the Teesta River basin in the Indian Himalayan region under 
climate change. 

* obs
rcp

rcp

p
p p

p

 
= ×  

  
                     (6) 

where *p  is the bias corrected precipitation estimate from the model; rcpp  is 
the direct model output without bias correction and obsp  is the observed precipi-

tation and obsp  and rcpp  are the mean values of obsp  and rcpp  respectively. 

3. Results and Discussion 
3.1. The Temporal Performance of the WRF Model for the  

Different RCPs 

The performance of RCPs on monthly, seasonal and annual time scales is pre-
sented using Figure 3 and Figure 4. These figures show the temporal simulation 
performance of WRF being driven by the different RCPs i.e. RCP4.5, RCP6.0 
and RCP8.5 compared with the observed patterns. Figure 3 is for the monthly 
trends over the study period i.e. 2006-2018 and Figure 4 is for the annual 
(Figure 4(a) & Figure 4(b)) and seasonal trends i.e. March-May (Figure 4(c) & 
Figure 4(d)) and September-November (Figure 4(e) & Figure 4(f)) over the 
study period. 

The performance of the WRF model pre-processed with different RCPs on 
monthly scale as presented by Figure 3 is generally poor and shows a negligible 
overall correlation i.e. of magnitudes less than 0.200. Some isolated overesti-
mates are observed especially around 2016 and 2018. The results further show 
that the RCPs can overestimate the monthly rainfall to magnitudes in excess of 
about 400% for RCP8.5; RCP4.5 overestimates up to about 360% while RCP6.0 
estimated up to 240% of the long-term mean. A critical analysis of Figure 3 
shows that 36.7% of observed monthly rainfall were below long-term mean; 
63.3% for RCP4.5; 58.3% for RCP6.0; and 57.5% for RCP8.5. This suggested that 
the RCPs largely underestimated monthly rainfall over the study period. It is this 
underestimation that resulted in a smaller overall relative anomaly of −3.956% 
for RCP4.5; 1.265% for RCP6.0; and 4.870% for RCP8.5. A detailed performance 
for each of the stations used is presented using Figure 5. 

Additional analysis of annual rainfall patterns revealed that the RCPs largely 
underestimate annual rainfall totals (Figure 4(a)). This performance however 
improves slightly with bias correction (Figure 4(b)). Further analysis of the re-

https://doi.org/10.4236/acs.2020.104030


I. Mugume et al. 
 

 

DOI: 10.4236/acs.2020.104030 581 Atmospheric and Climate Sciences 
 

sults for seasonal performance i.e. Figure 4(c) & Figure 4(d) for the March-May 
rainfall season reveals that generally RCP4.5 and RCP8.5 underestimated the 
March-May rainfall over the study period with exception of RCP6.0. A slight in-
creasing trend of the total March-May rainfall amount is observed at about 1.93% 
over the period and a coefficient of variation of 2.4 is observed. Whereas RCP8.5 
reasonably reproduced this trend, it had the largest variability i.e. coefficient of 
variation of 7.3. Additional analysis of the September-November results (Figure 
4(e) & Figure 4(f)) also revealed an increasing trend of about 1.43% over the pe-
riod. The performance of RCPs during this period largely overestimated the sea-
sonal rainfall. RCP4.5 has the smallest relative anomaly i.e. 4.984 but compara-
tively a higher variability, i.e. 12.8. On the other hand, RCP6.0 has the highest 
anomaly but a comparatively smaller variability, i.e. 7.1. 

 

 
Figure 3. Temporal patterns of RCPs simulated monthly rainfall and observed rainfall. The 
scale of the vertical axis is for relative rainfall anomalies computed from simulated/observed 
rainfall less the long-term mean (LTM) and then divided by LTM. Positive values indicate 
overestimation above the LTM while negative values indicate underestimation of the LTM. 
They have been presented along with observed rainfall for comparison. 
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Figure 4. Temporal patterns of RCPs nationally averaged simulated seasonal rainfall and observed 
rainfall anomalies. (a & b) is for the performance on annual time scales; (c & d) is for the 
March-May rainfall season while (e & f) is for the September-November Season over the study pe-
riod. 

 
The results in this study are comparable to the findings of Ongoma et al. [3] 

over East Africa. They evaluated 22 models under the CMIP5 and found the 
models to have a comparatively lower skill over East Africa while Fotso-Nguemo 
et al. [27] found RCP8.5 to present rainfall magnitudes comparatively lower than 
the Global Precipitation Climatology Center (GPCC) and Tropical Rainfall 
Measuring Mission (TRMM). While using RCP4.5 and RCP8.5 and 10 GCMs 
along with linear scaling as the bias correction method, Myo et al. [18] found 
that these RCPs projected fluctuating average monthly precipitation but found 
that annual precipitation is likely going to increase. These results are consistent 
with our findings which make us conclude that the 21st century precipitation is 
going to be highly variable at monthly scale. 
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3.2. Spatial Performance of the RCPs 

The spatial performance of WRF model driven by the three RCPs (RCP4.5, 
RCP6.0 & RCP8.5) considered in this study along with the bias corrected output 
using quantile mapping is presented using Figures 6-8. These figures are for 
correlation analysis (Figure 6); relative mean error (Figure 7), and relative root 
mean square error (Figure 8). Additional analysis is presented using Tables 4-6 
which present results per study location for correlation (Table 4); relative mean 
error (Table 5) and relative root mean square error (Table 6). 

 
Table 4. Shows the correlation values at specific study locations. “Non bc” is direct model 
output without bias correction.  

 
Non bc Bias corrected 

RCP4.5 RCP6.0 RCP8.5 RCP4.5 RCP6.0 RCP8.5 

Arua −0.07 −0.17 −0.23 −0.08 −0.21 −0.25 

Buginyanya −0.03 −0.12 0.05 0.03 −0.12 0.13 

Bushenyi 0.01 0.03 0.03 0.01 0.02 0.03 

Entebbe −0.02 −0.04 0.07 0.04 −0.01 0.15 

Gulu 0.12 0.13 0.31 0.37 0.28 0.49 

Jinja 0.03 −0.10 −0.04 0.02 −0.17 0.03 

Kabale −0.07 −0.07 −0.01 −0.07 −0.07 −0.01 

Kakoge −0.13 0.27 0.33 −0.40 0.29 0.25 

Kamenyamigo −0.07 0 0.06 −0.11 −0.01 0.10 

kasese 0.03 −0.08 0.07 −0.03 −0.12 −0.03 

Kibanda −0.16 −0.23 0 −0.13 −0.16 0.05 

kitgum −0.18 −0.15 −0.16 −0.29 −0.21 −0.17 

Kituza 0.03 −0.11 0.02 0.04 −0.10 0.10 

Kotido −0.01 −0.07 0.43 0.06 −0.08 0.45 

Kyembogo 0.11 0.01 −0.11 0.09 0.01 −0.14 

Kyenjojo −0.05 0.03 −0.02 −0.06 0.04 −0.03 

Lira −0.10 0.11 0.04 −0.08 −0.04 0.04 

Makerere 0.21 0.23 0.29 0.15 0.08 0.19 

Masindi 0.16 0.05 −0.10 0.13 −0.02 −0.07 

Mbarara −0.18 −0.20 0 −0.24 −0.26 −0.01 

Moroto −0.06 −0.21 0.44 −0.10 −0.21 0.36 

Mubende −0.08 −0.06 −0.09 −0.08 −0.06 −0.09 

Namulonge −0.02 −0.08 0.21 0.02 −0.13 0.26 

Ntusi −0.07 −0.05 0 −0.12 −0.10 −0.04 

Serere 0.14 −0.07 0.16 0.15 −0.03 0.22 

Soroti 0.14 −0.06 0.16 0.03 −0.18 0.18 

Tororo −0.13 −0.12 −0.01 −0.10 −0.11 0.03 

Wedalai 0.16 −0.10 −0.35 0.22 0.05 −0.36 

Average −0.01 −0.04 0.06 −0.02 −0.06 0.07 
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Table 5. Shows relative mean error magnitudes as a percentage of the long-term mean. 
“DMO” is direct model output i.e. not corrected for bias.  

 
Mean Error (DMO) Mean Error (Bias corrected) 

RCP4.5 RCP6.0 RCP8.5 RCP4.5 RCP6.0 RCP8.5 

Arua 0.09 0.24 0.34 0.31 0.27 0.34 

Buginyanya −0.48 −0.37 −0.36 0.33 0.35 0.24 

Bushenyi 0.20 0.15 0.11 0.13 0.02 −0.01 

Entebbe −0.79 −0.76 −0.82 0.24 0.21 0.18 

Gulu −0.43 −0.32 −0.27 0.06 0.02 0.19 

Jinja −0.32 −0.25 −0.32 0.11 0.02 0.03 

kabale 0.03 0.04 0.16 0.12 0 0.04 

Kakoge −0.16 −0.18 −0.36 0.08 0.16 0.16 

Kamenyamigo −0.20 −0.16 −0.19 0.08 0.01 −0.06 

Kasese 2.00 2.35 2.06 0.15 0.14 0.03 

Kibanda −0.05 −0.07 −0.06 0.22 0.10 0.07 

Kitgum −0.25 −0.10 −0.08 0.36 0.42 0.40 

Kituza −0.59 −0.57 −0.61 0.08 −0.01 −0.03 

Kotido 0.89 1.85 0.01 1.51 1.39 0.70 

Kyembogo 0.36 0.62 0.51 0.30 0.53 0.66 

Kyenjojo 0.53 0.63 0.52 0.16 0.15 0.29 

Lira −1.11 −0.95 −1.00 0.29 0.27 0.32 

Makerere −0.38 −0.33 −0.4 0.17 0.06 0.06 

Masindi −0.29 −0.11 −0.19 0.04 −0.01 0.06 

Mbarara −0.08 −0.09 −0.06 0.20 0.06 0.04 

Moroto −0.38 0.09 −0.4 0.94 0.73 0.82 

Mubende 0.59 0.62 0.52 0.14 0.08 0.18 

Namulonge −0.06 0.04 −0.03 0.08 0.01 0.01 

Ntusi 0.11 0.21 0.14 0.19 0.11 0.09 

Serere −0.41 −0.36 −0.36 0.23 0.16 0.22 

Soroti −0.28 −0.22 −0.19 0.11 0.08 0.04 

Tororo −0.32 −0.21 −0.25 0.26 0.22 0.20 

Wedalai −0.08 0.01 0.03 0 0.03 0.19 

Average −0.07 0.06 −0.06 0.25 0.20 0.20 
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Table 6. Shows the relative RMSE over different study locations as a fraction of the 
long-term mean. 

 
RMSE (% of LTM) RMSE (Bias corrected) 

RCP4.5 RCP6.0 RCP8.5 RCP4.5 RCP6.0 RCP8.5 

Arua 1.07 1.17 1.64 1.18 1.2 1.65 

Buginyanya 1.14 1.32 1.19 1.49 1.82 1.37 

Bushenyi 1.16 0.98 1.04 0.9 0.83 0.86 

Entebbe 1.04 1.03 1.03 1.07 1.03 0.89 

Gulu 1.26 1.23 1.19 1.24 1.29 1.41 

Jinja 0.77 0.79 0.82 0.76 0.76 0.74 

Kabale 1.5 1.29 1.56 0.9 0.84 0.84 

Kakoge 0.58 0.54 0.51 0.49 0.63 0.60 

Kamenyamigo 1.01 0.95 0.96 1.06 1.01 0.96 

Kasese 3.82 4.73 3.88 1.23 1.48 1.22 

Kibanda 1.24 1.2 1.14 1.28 1.16 1.11 

Kitgum 1.3 1.53 1.79 1.57 1.79 2.01 

Kituza 0.98 1 1.01 0.91 0.94 0.89 

Kotido 2.58 4.61 0.99 3.71 4.31 1.82 

Kyembogo 1.2 1.68 1.79 1.15 1.56 2 

Kyenjojo 1.18 1.27 1.3 0.9 0.87 1.11 

Lira 1.71 1.59 1.65 1.79 1.8 1.92 

Makerere 0.96 0.93 0.96 1.02 1.01 0.99 

Masindi 0.82 0.91 0.96 0.82 0.88 0.96 

Mbarara 1.54 1.38 1.38 1.44 1.31 1.16 

Moroto 1.43 2.7 1.3 2.98 3.92 3.01 

Mubende 1.25 1.2 1.33 0.91 0.8 1.02 

Namulonge 0.86 0.92 0.83 0.8 0.85 0.75 

Ntusi 1.13 1.15 1.12 1.05 1.02 1.02 

Serere 0.96 1.02 1.02 1.15 1.19 1.24 

Soroti 0.88 1 0.98 0.99 1.08 0.96 

Tororo 1.14 1.26 1.17 1.22 1.27 1.18 

Wedalai 0.43 0.5 0.77 0.48 0.54 1.11 

Average 1.25 1.42 1.26 1.23 1.33 1.24 
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Figure 6. Spatial correlation of RCPs simulated rainfall and observed rainfall. Figures 
(a-c) are for the direct model output without bias correction while Figures (d-f) are for 
bias corrected model output. 

 

 
Figure 7. Shows the spatialized relative mean errors presented by the RCPs as a fraction 
of the long-term mean. Figures (a-c) are the relative mean errors for the RCPs with no 
bias correction while figures (d-f) are the relative mean errors for the RCPs with bias cor-
rection. 
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Figure 8. Shows the spatialized relative root mean square errors presented by the RCPs as 
a fraction of the long-term mean. Figures (a-c) are the relative root mean square errors 
for the RCPs without bias correction while figures (d-f) are the relative root mean square 
errors for the RCPs with bias correction. 

 
Analysis of Figure 6 shows that nearly all the RCPs presented a weak negative 

correlation over most places of the country. A slight improvement with bias 
correction is noted over north western with RCP8.5 but largely, RCP4.5 and 
RCP6.0 presented a negative correction. RCP8.5 had a weak negative correlation 
on the western part of the country and a slight positive correction on the eastern 
part of the country. There seems to be no noticeable improvement with bias 
correction especially for RCP8.5. Additional analysis of the correlation values at 
specific locations (Table 4) reveals generally that RCP4.5 and RCP6.0 largely 
presented a negative correlation with observed rainfall i.e. RCP4.5 (17 cases out 
of 28 cases as negative correlation values) and RCP6.0 (19 cases out of 28 cases 
as negative values). Generally, these are very low scores and can not explain the 
variation in observed rainfall. 

Additional analysis is carried out on results presented by Figure 7 which 
presents the spatialized relative mean errors. The results show that RCPs with no 
bias correction had a greater part of the country with a slight overestimate espe-
cially RCP4.5 i.e. with magnitudes 0 - 1.0 of the long-term mean. For all the 
RCPs, the southwestern region is underestimated. A further investigation of rel-
ative mean errors presented by the bias corrected model output (Figures 
7(d)-(f)) reveals that largely areas that were originally overestimated are now 
underestimated. Areas that were originally underestimated have the relative 
mean errors slightly improved e.g. the case of south western region. Generally 
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the relative mean error magnitudes for both bias corrected and direct model 
output remain comparatively small largely within −0.9 to 1.0 of the long-term 
mean. This is also observed from the performance at specific study locations 
presented using Table 5. A detailed analysis of the results presented in Table 5 
reveals that bias correction had a tendency of removing the underestimation to 
become overestimation over most of locations i.e. 23 out of 28; 19 out of 28; and 
21 out of 28 for RCPs 4.5; 6.0; and 8.5 respectively. In a related study by Ghimire 
et al. [15], they noted that bias correction reduces the overall error magnitudes. 
This is why the relative mean error appears positive on average in Table 5. This 
could also be the reason why the bias corrected results presented comparatively 
better performance in Figure 3 and Figure 4. 

A further investigation of the relative magnitudes of errors compared to the 
long-term mean carried out using the relative root mean square error (Equation 
(2)) and presented using Figure 8 confirms the results presented in Figure 7. 
Generally, the magnitude of errors is approximately of magnitude 1.0 to 2.5 with 
exception of southwestern Uganda where they largely appear greater than 1.5 of 
the long-term mean especially over Mt. Rwenzori region. Additionally RCP6.0 
and the bias corrected RCP4.5 and RCP6.0 appear to present comparatively larger 
error magnitudes of the north eastern region. A slight improvement in the mag-
nitudes of relative root mean square errors over the south western region espe-
cially Mt. Rwenzori area is noted in all bias corrected RCP products. This is also 
confirmed by the results presented at specific locations in Table 6 which 
presents a slight improvement in the error magnitudes. A detailed analysis of the 
absolute root mean square errors in comparison to the long-term mean is pre-
sented using Table 6. A poor performance is noted over Kasese, Lira, Moroto 
and Mbarara (Table 6) of order of magnitude generally greater than 1.5 of the 
long-term mean especially the bias corrected results. Overall the results show 
that RCP4.5 presented a slightly better performance. 

The foregoing results probably indicate that these RCPs may not be realisti-
cally valid in low latitudes. However, a study over Central Africa with the do-
main including Uganda, by Fotso-Nguemo et al. [27] noted that the ensemble 
mean of the 20 GCMs was able to reproduce the rainfall patterns exhibited by 
the Global Precipitation Climatology Center better than those presented by the 
Tropical Rainfall Measuring Mission. This suggests different performance scores 
of RCPs with different data-sets and thus underscores the importance of using 
station observations as ground truth in validation studies. Nonetheless, the RCPs 
fairly reproduces the temporal patterns (Figure 3 and Figure 4) albeit with an 
underestimation. This could suggest that future extreme events being projected 
by different studies under these RCPs could be underestimated and could ac-
tually be severe. To improve the performance of the RCPs, this study proposes 
data assimilation or review of these RCPs. 

3.3. Skill Scores 

Figure 9 presents the spatialized accuracy in terms of the hit rate (accuracy) for 
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the RCPs while Table 7 presents the hit rate levels per study location. The results 
generally show RCP8.5 presenting a slightly better skill than the rest. Isolated 
cases of above average skill are observed over the northwestern and northeastern 
regions. However, generally the skill is largely 20% - 50%. There was no noticea-
ble improvement in skill with bias correction of the RCPs. In some cases over 
some areas, actually the skill degraded e.g. over the northeastern Uganda. This is 
in contrast to the findings of Ghimire et al. [15], who noted that bias correction 
improves the accuracy of numerical simulations. This study argues that the 
weak/no improvement in the performance after bias correction could be because 
the initial conditions used to initialize this study are already bias corrected as 
described by Monaghan et al. [17], and so additional bias correction is not ne-
cessary. 

Further to the skill scores (Figure 9 and Table 7), the results are in agreement 
with Kisembe et al. [9], who noted that the climate simulations whereas they re-
produce the climate variability, they present a poor skill regarding the rainfall 
seasons especially the March-May rainfall season over Uganda. In general, this 
study finds RCP8.5 to present a slightly better performance in terms of the hit 
rate and is thus proposed for future simulation over low latitudes including 
Uganda. However it is surprising to note that bias correction did not necessary 
improve performance and probably considers that this observation could be that 
because the LBCs used in this experiment are already bias corrected as explained 
earlier. 

 

 
Figure 9. Shows the Spatial accuracy in terms of the hit rate presented by the RCPS. Fig-
ures (a-c) are for the direct model output as simulated by the RCPs while Figures (d-f) are 
for the bias corrected hit rates of the RCPS. The results shown are out of 100%  
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Table 7. Shows the results of hit rates for the RCPs. “DMO” is direct model output with 
no bias correction. 

 
HIT rate, DMO (%) HIT rate (Bias corrected) 

RCP4.5 RCP6.0 RCP8.5 RCP4.5_bc RCP6.0_bc RCP8.5_bc 

Arua 20.00 18.71 19.35 16.81 21.01 16.81 

Buginyanya 28.47 24.09 27.01 35.96 34.21 32.46 

bushenyi 32.31 29.23 26.15 34.74 29.47 25.26 

Entebbe 29.25 27.89 29.25 29.46 25.00 25.89 

Gulu 27.52 24.16 23.49 26.55 28.32 23.01 

Jinja 29.33 23.33 28.67 23.68 15.79 25.44 

Kabale 27.33 28.00 31.33 17.54 25.44 25.44 

Kakoge 41.67 50.00 58.33 25.00 33.33 41.67 

Kamenyamigo 29.60 25.60 30.4 22.73 23.64 32.73 

Kasese 31.37 26.8 32.03 30.77 29.91 30.77 

Kibanda 30.46 25.83 38.41 29.06 25.64 37.61 

Kitgum 22.97 24.32 22.30 21.24 18.58 17.70 

Kituza 19.86 21.92 26.03 25.00 28.57 27.68 

Kotido 30.00 26.67 33.33 26.67 26.67 30.00 

Kyembogo 15.62 15.62 15.62 18.75 15.62 18.75 

Kyenjojo 17.65 20.59 26.47 17.65 29.41 29.41 

Lira 16.56 20.53 23.84 50.86 45.69 46.55 

Makerere 28.67 31.33 31.33 41.23 33.33 35.96 

Masindi 22.22 18.06 19.44 24.77 21.10 21.10 

Mbarara 22.88 24.84 30.07 26.05 28.57 26.89 

Moroto 43.48 47.83 65.22 30.43 39.13 47.83 

Mubende 22.86 28.57 31.43 20.00 28.57 34.29 

Namulonge 19.57 19.57 31.88 23.08 19.23 34.62 

Ntusi 22.86 22.86 24.29 21.15 21.15 21.15 

Serere 30.20 24.83 28.86 23.48 24.35 22.61 

Soroti 29.58 23.24 27.46 21.85 19.33 21.85 

Tororo 17.81 23.29 27.40 29.82 28.07 28.07 

Wedalai 68.75 59.38 59.38 59.38 50.00 50.00 

Average 27.82 27.04 31.03 27.63 27.47 29.70 
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4. Summary and Conclusion 

This study was about validating the RCPs and was carried out over Uganda us-
ing 28 stations spread across the country for the period 2006-2018. It carried out 
bias correction for the RCPs over the period 2009-2018. The period 2006-2008 
was for training the bias correction algorithm and the study used the quntile 
mapping method to correct the biases of the three RCPs i.e. RCP4.5, RCP6.0 and 
RCP8.5. In assessing the performance of the RCPs, the study used the Pearson 
correlation coefficient; the relative root mean square error; relative mean error; 
and accuracy (i.e. hit rate) computed from a 3 × 3 contingency table for the cases 
of “Below normal”, “Normal”, and “Above normal”. Below normal is when the 
monthly rainfall is less than 75% of the long-term mean; Normal is when the 
monthly rainfall is within 75% - 125% of the long-term mean; and Above normal is 
when the monthly rainfall is greater than 125% of the long-term mean. Trends are 
presented using line graphs while the spatial patterns are presented using maps 
derived using the inverse distance weighted spatialization method. 

This study summarises the performance of the RCPs using Table 8. The 
summary shows that RCP8.5 presented comparatively better ranking on correla-
tion score; relative mean error; relative root mean square error and hit rate. This 
was followed by RCP4.5 and then RCP6.0. However this study observed that 
there was no significant difference in the performance of all these RCPs and 
considers that they remain poor in informing us about future changes in cli-
mates especially over low latitudes. 

The study further noted largely a negligible improvement due to bias correc-
tion. It noted that bias correction tended to improve underestimated rainfall 
cases and on the other hand decreased the overestimated rainfall cases. This did 
not necessarily improve the skill, nor the error magnitudes and we attribute this  

 
Table 8. Summarizes the performance of the RCPs on different monthly time-scales. 
“RMSE” is the root mean square error. The values in the parenthesis are the ranking for 
the given score on the scale of 1 - 3 for the respective RCP. The lower the rank, the better 
the performance of the RCP. The average ranking is obtained by simple arithmetic aver-
age column-wise across different performance scores. 

 
Scores (%) Bias corrected 

RCP4.5 RCP6.0 RCP8.5 RCP4.5 RCP6.0 RCP8.5 

Performance 
score 

      

Correlation −0.01 (2) −0.04 (3) 0.06 (1) −0.02 (2) −0.06 (3) 0.07 (1) 

Relative mean 
error 

−0.07 (3) 0.06 (1) −0.06 (1) 0.25 (3) 0.20 (1) 0.20 (1) 

Relative RMSE 1.25 (1) 1.42 (3) 1.26 (1) 1.23 (1) 1.33 (3) 1.24 (2) 

Hit rate 27.82 (2) 27.04 (3) 31.03 (1) 27.63 (2) 27.47 (3) 29.70 (1) 

Average 
ranking 

2 2.5 1 2 2.5 1.25 
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to the fact that, it could be because the LBCs are already bias-corrected. Whereas 
this study recommends RCP8.5, it also recommends re-evaluating the assump-
tions in these RCPs. The other option recommended is to use data assimilation 
to improve the analysis of these RCPs for future climate scenarios. 
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