Co-development of climate services: user engagement and knowledge brokering

Fiona Percy
ALP, CARE

WISER KM
ACPC, 2017, Addis Ababa
Users need information which:

- **Is fit for purpose** – eg. Informs decision-making for climate resilient livelihoods and risk management in response to dynamic changes
- **Is useful and usable**
 - Helps understanding of past and future climate
 - Recognises the certainty of uncertainty in the future climate
 - Respects and blends with local and indigenous knowledge
 - Is high quality, reliable and adds value, explains probability and levels of certainty in information
 - Increases trust and confidence
- **Is relevant and localised**
 - Enables more informed, anticipatory, precautionary, timely and flexible decisions - scenarios
 - Enables relevant decisions at different timescales and spatial scales
- **Is relevant to range of sectors and levels and gender**
Climate service actors
Participatory Scenario Planning (PSP) a seasonal user based climate service

- Sub-national Multi-stakeholder forum – meteorological services, communities, government sectors, NGOs, research, private sector etc.
- Review past season – relating to local realities and context
- Share & combine seasonal climate forecasts – local & scientific sources.

- Collectively interpret seasonal forecast & probabilities into context specific local livelihood & sector seasonal advisories.
- Advisories communicated to users through agreed local channels.
- Enable decision making and planning which responds to seasonal climatic risk, uncertainty & opportunities.
Step 1. Designing the PSP process
Developing a well thought out, locally relevant and appropriate PSP process, including deciding the level (national, county/province, district etc.) at which to conduct PSP and forming partnerships for sustainability of the process.

Step 2. Preparing for a PSP workshop
Engaging stakeholders, bringing out their information needs for the coming season and using this to plan for targeted workshop outcomes.

Step 3. Facilitating a PSP workshop
Multi-stakeholder forum – access, understanding & combining meteorological & local seasonal forecasts; interpretation into locally relevant and actionable information for seasonal decision making & planning.

Step 4. Communicating advisories from a PSP workshop
Reaching all actors who need to use the information, in good time to inform decisions and plans.

Step 5. Feedback, monitoring and evaluation
Two-way communication and feedback between producers, intermediaries and users of climate information enabling continuous, iterative and shared learning and improving the PSP process and outcomes.

PSP is an iterative learning process
PSP Upscaled in Africa 2016

Key
- **Red** – PSP upscaled and integrated in development and sectoral planning.
- **Yellow** – PSP adopted and implemented in several sub-national areas.
- **Green** – PSP implemented at pilot stage.
- **Blue** – PSP champions trained and are promoting adoption of the approach.

By:
NMHS: National met services
Ministries of agriculture
CARE / other NGOs
Sub-national planners
Adaptation, resilience and agriculture programmes
User based climate service value chain

CORE FUNCTION
- Climate data, forecasts development

OUTPUT
- Decision relevant climate products
- Multi-stakeholder interpretation
- User based advisories
- Communication
 - User access, understanding, interpretation
 - Decision, action
User based CIS value chain – multiplier functions

- Puts changing user information needs & knowledge at the center
- Facilitates linkages, adds value
- Ensures learning is integrated and continuous across the value chain
- Supports two-way communication, monitoring and feedback between users, producers and intermediaries
- Motivates enabling institutional frameworks and resource flows for sustained multi-stakeholder engagement in CIS
Recognising Roles

<table>
<thead>
<tr>
<th>User actions</th>
<th>Climate services</th>
<th>Knowledge Broker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeframes for making decisions: livelihood, services, risk management</td>
<td>Availability of supporting data, forecasts and information linked across timescales</td>
<td>Informing users and producers of supply and demand, awareness raising</td>
</tr>
<tr>
<td>Access to range of information, assets, services</td>
<td>Products developed and accessible, presence of experts</td>
<td>Linking, convening, sharing knowledge, capacity building</td>
</tr>
<tr>
<td>Understand quality, relevance and accuracy: participate in developing climate service</td>
<td>Simple presentation of complex and complicated, Tailoring to need</td>
<td>Multi-stakeholder dialogue, Combine knowledge sources, blending, Facilitate co-development</td>
</tr>
<tr>
<td>Make sense, develop plans</td>
<td>Localisation, interpretation for use, advisory development</td>
<td>Facilitate collective interpretation and planning</td>
</tr>
<tr>
<td>Communicate to others</td>
<td>Communicate and listen, set up sub national coordination group</td>
<td>Coordinate communication plans and links with media</td>
</tr>
<tr>
<td>Knowledge triggers decision and action, actions have results - expected and unexpected</td>
<td>Learn what happened next – what was useful, usable and used? What outcome? What can be improved next time?</td>
<td>Design and coordinate feedback and learning loops, monitoring systems, participation, identify research needs</td>
</tr>
</tbody>
</table>

May 31, 2017
Some reflections

Institutionalising of co-development and multiple actor engagement – sub national coordination is key.

Maintaining flexibility and dynamic evolution as climate changes, science evolves and user demand grows. Climate services are still new -

Role of knowledge brokers becomes key, to:
- find and link users and providers – within and across the full chain
- enable users to articulate and identify their needs and have confidence to engage with intermediaries and climate service providers
- ensure feedback and learning loops,
- maintain multi-actor interaction,
- recognise new relations, options and responses as they evolve
- pay attention to trust and value in use of CS,
- ensure uncertainty as well as information is communicated
- ensure capacity (not limited to training) among actors
- enable scientists and NMHS to focus on science, and link to social development actors and sectors to connect with users. Eg ENACTS landing page: http://iri.columbia.edu/resources/enacts/
Thank you

alp@careclimatechange.org
http://careclimatechange.org/our-work/alp
User based CIS value chain - actors

MULTIPLIER FUNCTION
- Climate data, forecasts development
- Decision relevant climate products

CORE FUNCTION
- Multi-stakeholder interpretation
- User based advisories

OUTPUT
- Communication
- User access, understanding, interpretation

LEARNING LOOPS
- Use
- Decision, action

MULTIPLE FUNCTION
- Changing user information needs & knowledge

ACTORS
- Multiple stakeholders working together to co-generate:
 - NMHS, ICPAC, AGRHYMET, IRI
 - National, local governments
 - Local forecasters
 - Community leaders
 - NGOs, CBOs, FBOs
 - Sectoral Departments
 - Adaptation, DRM, development, resilience, agriculture, sector programmes
 - Researchers
 - Financial, insurance services
 - Media, - Private sector

- Media
- Sectoral Departments
- Extension services
- NGOs, CBOs, FBOs
- Adaptation, DRM, development, resilience, agriculture, sector programmes
- NMHS, ICPAC, AGRHYMET, IRI
- Local administration
- Researchers
- Private sector

- Community planning, EWS
- Farmers, pastoralists
- NGOs, CBOs, FBOs
- Sectoral Departments
- Adaptation, DRM, development, resilience, agriculture, sector programmes
- Regional organisations (IGAD)
- Financial, insurance services
- Researchers
- Private sector (input suppliers, marketers, retailers)

TOOLS, PROCESSES
- Met stations, community rain gauges, satellites, ENACTs maprooms
- RCOFs, PSP, PICSA, FEWSNET
- PSP, PICSA, CICs, WeFarm, RANET, community radio, SMS, bulletins, ENACTs maprooms
- PSP, PICSA