CLIMATE SERVICES AND PRODUCTS PROVIDED BY IGAD CLIMATE PREDICTION AND APPLICATIONS CENTRE (ICPAC)

By Abebe Tadege, ICPAC

Inception workshop on delivering climate resilient development policies in Africa, 21-22 Nov. 2019, Addis Ababa, Ethiopia
1. ABOUT IGAD

- Established in 1986 to address drought and development-IGADD
- IGAD: Revitalized in 1996 and expanded its mandate to include three priority areas:
  - Agriculture & Environment
  - Economic Cooperation & Social Development
  - Peace & Security
1. ABOUT IGAD

- The **IGAD region stretches** over 5.2 million sq km, some 80% is ASAL
- **Population of over 200 million**, characterised by high growth (3%) rate and **rapid urbanisation**
- Highly vulnerable to climatic variability and change (recurrent droughts and floods)
- **Severe land degradation & advances in desertification**
- History of long and protracted **conflicts** causing huge number of **refugees and displacement and migration**
- **High level of poverty**
- **Economic mainstay**: agriculture (crop and livestock)
1. ABOUT IGAD

The region is rich in natural resources (Biodiversity, Water, Land, Climate, Soil, Wildlife)

- Diverse in culture
- Fast growing economies
- Untapped mineral resources

IGAD REGION:
its members
1. ABOUT IGAD

IGAD’s Vision

IGAD to be the premier Regional Economic Community (REC) for achieving peace and sustainable development in the region.

IGAD’s Mission

Promote regional cooperation and integration to add value to Member States’ efforts in achieving peace, security and prosperity.
1. ABOUT IGAD

Divisions
- Agriculture and environment protection
- Economic cooperation and social development
- Peace and security
- Social

Specialized Institutes
- Conflict Early Warning and Response Mechanism (CWARN)
- IGAD Climate Prediction and Application Center (ICPAC)
- IGAD Centre for Pastoral Areas and Livestock Development (ICPALD)
- IGAD Sheikh Technical Veterinary School
- IGAD Centre of Excellence in Preventing and Countering Violent Extremism

Governance
- The Assembly of Heads of State and Government
- The Secretariat
- The Council of Ministers
- The Committee of Ambassadors

Programs
- IGAD Drought Disaster Resilience and Sustainability Initiative (IDDRSI)
- Migration Program
- Health Program
- IGAD Security Sector Program
- Land Governance Program
1. WHY WE NEED CLIMATE INFORMATION

Global, regional, national and local initiatives and strategies require enhanced climate data sharing and exchange

• Sustainable development goals (SDG)
• The Paris Agreement on climate change
• Sendai Framework for Disaster Risk Reduction
  – It calls for understanding weather and climate risks
  – It calls for substantially increase the availability of and access to early warning systems
• Agenda 2063
• Regional and national development plans
• There is a growing demand for user tailored climate information in the areas of natural resource management, disaster risk management and human-induced climate change. WMO GFCS program
3. ABOUT ICPAC

- **BACKGROUND:** Established in 1988 as the Drought Monitoring Centre, Nairobi (DMCN);

- 2007, the **Protocol** establishing the Centre signed by IGAD heads of states & the name changed to: **IGAD Climate Prediction and Applications Centre (ICPAC)**

- ICPAC is a WMO Regional Climate Centre (WMO-RCC) for Eastern Africa.

- ICPAC is a member of AUC/NEPAD Network for Water Centres of Excellence.

- ICPAC has an Observer Status with the UNFCCC

---

**MISSION:** Foster climate services and knowledge to enhance community resilience for prosperity in the Greater Horn of Africa
3. ABOUT ICPAC

VISION
• To be a world-class centre of excellence in climate services for sustainable development in the Greater Horn of Africa

MISSION
• Foster climate services and knowledge to enhance community resilience for prosperity in the Greater Horn of Africa
3. ABOUT ICPAC

Key Areas of Work & Mandates of ICPAC

1. Climate Data Management, Climatology & Climate Monitoring
2. Climate Diagnostics, Prediction and Early warning
3. Sectoral applications of climate information
4. Disaster Risk Management (DRM)
5. Climate Change
6. Climate Research and modeling
7. Capacity building
8. Climate Outlook Forums (COFs)
4. ICPAC-PRODUCTS & SERVICES

Baseline climatology

Climate monitoring

Predictions

Sectoral Applications

Climate change
5. CAPABILITY AT ICPAC

- ICPAC is a designated WMO Regional Climate Centre (RCC) for Eastern Africa
- Data and Infrastructure: ICPAC receives over 120 met station data from its member states and satellite data receiving station
- ICPAC runs two cluster nodes with a capacity of 30 and 100 tera flops for running regional climate models (WRF)
- ICPAC has currently about 63 staff with various disciplinary back grounds
- ICPAC currently runs about 15 projects
- Runs several partnerships
5. CAPABILITY AT ICPAC

SEVERAL TOOLS ARE BEING USED AT ICPAC

USE OF GEO-TOOLS

- GeoCLIM
- GeoCOF
- GeoMOD
- WRF
- CORDEX

OUTCOME

- Increased availability and access to climate data
- Improved monitoring of climate extremes (floods and droughts)
- Improved forecast and early warning
- Improved climate services
- Reduction in human life loss and economic damage
- Recognition of ICPAC as WMO Regional Climate Center (RCC)

Products are available at the following links:

- Apps Portal: [http://geoportal.icpac.net/appsportal/](http://geoportal.icpac.net/appsportal/)
- ICPAC website: [www.icpac.net](http://www.icpac.net)
Weather and climate scales

- Weather
  - hours: Rain squall, Cyclone
  - days: Wet Season/Dry Season
  - months: El Niño/Southern Oscillation (ENSO)
  - years: Pacific Decadal Oscillation (PDO)
  - decades: Global Warming, Sea Level Rise & Ocean Acidification
- Climate variability
- Climate change

Weather and climate scales range from hours to centuries.
CLIMATE VARIABILITY AND CLIMATE CHANGE

Climate Variability and Climate Change

Climate Variability
Short term: (years to decadal) rises and falls about the trend line (El Nino Southern Oscillation, ENSO)

Climate Oscillations
Multi-decadal oscillations in regional climate: (e.g. Pacific Decadal Oscillation, PDO, North Atlantic Oscillation, NAO)

Climate Change
Long Term Trends or major shifts in climate: (centuries)
CLIMATE VARIABILITY (2015/16 EL NIÑO)

EL NIÑO IMPACTS OVER NORTHERN SECTOR DURING JJAS 2015

EL NIÑO IMPACTS OVER EQUATORIAL SECTOR DURING OND 2015

Friday, November 22, 2019

INTERGOVERNMENTAL AUTHORITY ON DEVELOPMENT
6. WAY FORWARD

Strengthen meteorological infrastructure
- Data Observational systems and networks
- Data telecommunication systems
- Data procession, analysis and forecasting systems
- Product and information dissemination systems
- Human resource capital

Improve Climate literacy at all levels

Downscaled climate information using RCMs

Improve effectiveness of Climate Information Systems (CIS) by putting in place appropriate institutional, technological, organizational, legal and financial arrangements to generate, exchange and disseminate information nationally, regionally and globally.
THANK YOU VERY MUCH!
Humans are largely responsible for rising global temperatures. IPCC is 95% (extremely likely) sure that humans causing global warming.

Many observed impacts are happening more quickly than previously predicted.

Climate change is creating more frequent and more intense extreme weather events.

Business-as-usual will lead us far beyond 2 degrees Celsius of warming (dangerous levels of climate change).

Cutting carbon dioxide (CO2) emissions is the most urgent imperative for global climate action.
HUMAN INDUCED CLIMATE CHANGE

Theory of the greenhouse effect

The human-induced climate change is discussed in this slide. It shows the difference between the natural greenhouse effect and the human-enhanced greenhouse effect. The natural greenhouse effect is represented by the sun's radiation being absorbed by greenhouse gases like CO₂, CH₄, and N₂O, which trap heat in the atmosphere. In contrast, human activities, such as burning fossil fuels and deforestation, have increased the concentration of these greenhouse gases, leading to a greater amount of heat being trapped and causing global warming. The slide includes a graph showing the increase in carbon dioxide, methane, and nitrous oxide concentrations over time, highlighting the impact of human activities on climate change.
CLIMATE CHANGE INDICATORS

- Tropospheric Temperature
- Humidity
- Temperature Over Oceans
- Sea Surface Temperature
- Sea Ice
- Sea Level
- Ocean Heat Content
- Temperature Over Land
- Glaciers
- Snow Cover
Climate Change is already having a wide range of adverse impacts around the world in general and Africa in particular. These impacts include:

- Changes in climate patterns and increase in frequency and intensity of climate extremes including droughts, floods and heat waves
- Sea-level rise
- Environmental degradation and desertification
- Melting of glaciers
- Reduction in water availability and higher water stress
- Increased health risks
- Increased food insecurity because of reduced crop productivity
- Changes in ecosystems
FINDINGS OF THE 5TH ASSESSMENT REPORT OF THE IPCC WORKING GROUP II FINDINGS

- Climate change now affects every part of the planet.
- Climate change will increase the frequency and severity of extreme weather.
- Meeting the scale of the challenge requires adaptation and mitigation.
- Rapid and steep reductions in greenhouse gas emissions can reduce risks and costs—and the timing matters.
FINDINGS OF THE 5TH ASSESSMENT REPORT OF THE IPCC WORKING GROUP III FINDINGS.

• Without Explicit Action, We Could See More than 4°C of Warming
• Limiting Warming to 2°C Is Still Possible
• Staying Within the Carbon Budget Requires Immediate Action
• We’ll Need to Phase Out Emissions Entirely in the Long-Term
• We’ll Need Action from All Regions of the World
• Shifting to a Low-Emissions Pathway Requires a Large-Scale Transformation
CONCEPTS AND DEFINITIONS

• Q1. Why climate is important? Why we are concerned about climate?
• Q2. From where do we get climate information?
• Q3. What do you understand by weather and climate?
• Q4. What do you understand by climate variability verses climate change?
• Q5. What do you understand by vulnerability and what are vulnerability indictors?
• Q6. What do you understand by Adaptation? How many types of adaptation are there?
• Q7. Why we are concerned about climate change adaptation in Africa?
• Q8. What are the causes of climate change?
• Q9. Do you know how much carbon dioxide (CO2) is being pumped into the atmosphere currently as a result of energy use (get the figures)?
EVIDENCES OF CLIMATE CHANGE

Lodwar Met_TMAX trend (1961-2017)

\[ y = 0.0264x + 34.42 \]

\[ R^2 = 0.6288 \]
EVIDENCES OF CLIMATE CHANGE AND PROJECTIONS

The graph shows historical and projected air temperature changes from 1981 to 2101. The historical data is represented by a purple line, while the projections for RCP4.5 and RCP8.5 scenarios are shown in green and red lines, respectively. The projections indicate an increase in air temperature over time, with RCP8.5 showing a more pronounced rise compared to RCP4.5.
OBSERVED RAINFALL TRENDS
OBSERVED TEMPERATURE TRENDS
FUTURE TEMPERATURE PROJECTIONS

Future Temperature projections

Annual
MAM
JJAS
OND

RCP26
2080

RCP45
2080

RCP85
2080

INTERGOVERNMENTAL AUTHORITY ON DEVELOPMENT

ICPAC
FUTURE RAINFALL PROJECTIONS

Future Rainfall projections

RCP26
2080

RCP45
2080

RCP85
2080

25, 2017
RESPONSE TO CLIMATE CHANGE

Climate change is a global challenge affecting all countries around the world. The international community has recognized the climate change problem and has determined to address it

• UNFCCC
• Kyoto Protocol
• Paris Agreement on climate change
EVIDENCES OF CLIMATE CHANGE

Annual temperature variability and trends
HUMAN INDUCED CLIMATE CHANGE

Information and Knowledge requirements for climate change

• What has been observed so far (Climate trends)?
• How is the future climate look like (climate projections)?
• What are the impacts of Climate change?
• What are the responses to climate change at the international and national level?
EVIDENCES OF CLIMATE CHANGE

Annual temperature variability and trends

Annual Tmax for Dagoretti

Annual Tmin for Dagoretti

Annual Max Temp: Lodwar

\[ y = 0.0317x + 34.322 \]

Annual Min Temp: Lodwar

\[ y = 0.017x + 23.465 \]

Annual Max Temp: Kisumu

\[ y = 0.0138x + 29.238 \]

Annual Min Temp: Kisumu

\[ y = 0.017x + 23.465 \]
EVIDENCES OF CLIMATE CHANGE

Annual temperature variability trends

Variability and trend of annual mean minimum temperature annual mean maximum temperature at Djibouti (Authors own analysis).
THE EARTH’S CLIMATE SYSTEM

Changes in the Atmosphere: Composition, Circulation

Changes in the Hydrological Cycle

Atmosphere

N₂, O₂, Ar, H₂O, CO₂, CH₄, N₂O, O₃, etc.
Aerosols

Volcanic Activity

Atmosphere-Biosphere Interaction

Human Influences

Glacier

Biosphere

Land Surface

Changes in the Cryosphere:
Snow, Frozen Ground, Sea Ice, Ice Sheets, Glaciers

Hydrosphere: Ocean

Ice-Ocean Coupling

Hydrosphere: Rivers & Lakes

Changes in the Ocean:
Circulation, Sea Level, Biogeochemistry

Changes in/on the Land Surface:
Orography, Land Use, Vegetation, Ecosystems

Atmosphere-Biosphere Interaction

Precipitation Evaporation

Heat Exchange

Wind Stress

Sea Ice

Terrestrial Radiation

IGAD CLIMATE PREDICTION AND APPLICATIONS CENTRE (ICPAC)
CHALLENGES

Diversity of climate information needs
• Short term climate information
• Long term climate information

Diversity of climate information users and providers
Players and stockholders are many
• National governments (Met services, Environment ministries
• NGOs
• UN organization (WMO, UNEP, UNDP, World Bank)
• Researchers
• NGOs
• Universities
• Professional associations
• Banks
• Private sector